-
4
-
-
85153947869
-
Active learning with statistical models
-
G. Tesauro, D. Touretzky, and T. Leen, editors, The MIT Press
-
David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with statistical models. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems, volume 7, pages 705-712. The MIT Press, 1995.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 705-712
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
5
-
-
85032196409
-
Index driven selective sampling for CBR, 2003
-
To appear in, Springer-Verlag, Trondheim, Norway, 23-26 June
-
Nirmalie Wiratunga, Susan Craw, and Stewart Massie. Index driven selective sampling for CBR, 2003. To appear in Proceedings of the Fifth International Conference on Case-Based Reasoning, Springer-Verlag, Trondheim, Norway, 23-26 June 2003.
-
(2003)
Proceedings of the Fifth International Conference on Case-Based Reasoning
-
-
Wiratunga, N.1
Craw, S.2
Massie, S.3
-
6
-
-
0028424239
-
Improving generalization with active learning
-
David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
-
(1994)
Machine Learning
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
7
-
-
0027560678
-
Selecting concise training sets from clean data
-
March
-
Mark Plutowski and Halbert White. Selecting concise training sets from clean data. IEEE Transactions on Neural Networks, 4(2):305-318, March 1993.
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, Issue.2
, pp. 305-318
-
-
Plutowski, M.1
White, H.2
-
8
-
-
0028499630
-
The effect of unlabeled examples in reducing the small sample size problem
-
Shahshashani and Landgrebe. The effect of unlabeled examples in reducing the small sample size problem. IEEE Trans Geoscience and Remote Sensing, 32(5):1087-1095, 1994.
-
(1994)
IEEE Trans Geoscience and Remote Sensing
, vol.32
, Issue.5
, pp. 1087-1095
-
-
Shahshashani1
Landgrebe2
-
9
-
-
84898980291
-
A mixture of experts classifier with learning based on both labeled and unlabelled data
-
Miller and Uyar. A mixture of experts classifier with learning based on both labeled and unlabelled data. In NIPS-9, 1997.
-
(1997)
NIPS-9
-
-
Miller1
Uyar2
-
11
-
-
85124125604
-
Heterogeneous uncertainty sampling for supervised learning
-
William W. Cohen and Haym Hirsh, editors, New Brunswick, US, Morgan Kaufmann Publishers, San Francisco, US
-
David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning. In William W. Cohen and Haym Hirsh, editors, Proceedings of ICML-94, 11th International Conference on Machine Learning, pages 148-156, New Brunswick, US, 1994. Morgan Kaufmann Publishers, San Francisco, US.
-
(1994)
th International Conference on Machine Learning
, pp. 148-156
-
-
Lewis, D.D.1
Catlett, J.2
-
16
-
-
36849033557
-
Scalable and practical probability density estimators for scientific anomaly detection
-
PhD thesis
-
Dan Pelleg. Scalable and Practical Probability Density Estimators for Scientific Anomaly Detection. PhD thesis, Carnegie-Mellon University, 2004. Tech Report CMU-CS-04-134.
-
(2004)
Carnegie-Mellon University Tech Report CMU-CS-04-134
-
-
Pelleg, D.1
-
17
-
-
0000695404
-
Information-based objective functions for active data selection
-
David MacKay. Information-based objective functions for active data selection. Neural Computation, 4(4):590-604, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.4
, pp. 590-604
-
-
Mackay, D.1
|