-
1
-
-
0030026001
-
Requirement for Xist in X chromosome inactivation
-
Penny GD, Kay GF, Sheardown SA et al. Requirement for Xist in X chromosome inactivation. Nature 1996;379:131-137.
-
(1996)
Nature
, vol.379
, pp. 131-137
-
-
Penny, G.D.1
Kay, G.F.2
Sheardown, S.A.3
-
2
-
-
0031044166
-
Xist-deficient mice are defective in dosage compensation but not spermatogenesis
-
Marahrens Y, Panning B, Dausman J et al. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 1997;11:156-166.
-
(1997)
Genes Dev
, vol.11
, pp. 156-166
-
-
Marahrens, Y.1
Panning, B.2
Dausman, J.3
-
3
-
-
21144446865
-
Stable X chromosome inactivation involves the PRC1 polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase
-
Hernandez-Munoz I, Lund AH, van der Stoop P et al. Stable X chromosome inactivation involves the PRC1 polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci USA 2005;102:7635-7640.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 7635-7640
-
-
Hernandez-Munoz, I.1
Lund, A.H.2
Van Der Stoop, P.3
-
4
-
-
33746407708
-
Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing
-
Schoeftner S, Sengupta AK, Kubicek S et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 2006;25:3110-3122.
-
(2006)
EMBO J
, vol.25
, pp. 3110-3122
-
-
Schoeftner, S.1
Sengupta, A.K.2
Kubicek, S.3
-
5
-
-
0033637110
-
A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation
-
Wutz A, Jaenisch R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 2000; 5:695-705.
-
(2000)
Mol Cell
, vol.5
, pp. 695-705
-
-
Wutz, A.1
Jaenisch, R.2
-
6
-
-
84855402974
-
Concise review: Pluripotency and the transcriptional inactivation of the female mammalian X chromosome
-
Minkovsky A, Patel S, Plath K. Concise review: Pluripotency and the transcriptional inactivation of the female mammalian X chromosome. Stem Cells 2012;30:48-54.
-
(2012)
Stem Cells
, vol.30
, pp. 48-54
-
-
Minkovsky, A.1
Patel, S.2
Plath, K.3
-
7
-
-
0035228079
-
X-chromosome inactivation: Counting, choice and initiation
-
Avner P, Heard E. X-chromosome inactivation: Counting, choice and initiation. Nat Rev Genet 2001;2:59-67.
-
(2001)
Nat Rev Genet
, vol.2
, pp. 59-67
-
-
Avner, P.1
Heard, E.2
-
8
-
-
77950354829
-
The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation
-
Pullirsch D, Hartel R, Kishimoto H et al. The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 2010;137:935-943.
-
(2010)
Development
, vol.137
, pp. 935-943
-
-
Pullirsch, D.1
Hartel, R.2
Kishimoto, H.3
-
9
-
-
0035858882
-
Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation
-
Csankovszki G, Nagy A, Jaenisch R. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 2001; 153:773-784.
-
(2001)
J Cell Biol
, vol.153
, pp. 773-784
-
-
Csankovszki, G.1
Nagy, A.2
Jaenisch, R.3
-
10
-
-
33751310350
-
A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes
-
Diaz-Perez SV, Ferguson DO, Wang C et al. A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes. Genetics 2006;174: 1115-1133.
-
(2006)
Genetics
, vol.174
, pp. 1115-1133
-
-
Diaz-Perez, S.V.1
Ferguson, D.O.2
Wang, C.3
-
11
-
-
0035473989
-
Forty years of decoding the silence in X-chromosome inactivation
-
Boumil RM, Lee JT. Forty years of decoding the silence in X-chromosome inactivation. Hum Mol Genet 2001;10:2225-2232.
-
(2001)
Hum Mol Genet
, vol.10
, pp. 2225-2232
-
-
Boumil, R.M.1
Lee, J.T.2
-
12
-
-
34249006523
-
Perinucleolar targeting of the inactive X during S phase: Evidence for a role in the maintenance of silencing
-
Zhang LF, Huynh KD, Lee JT. Perinucleolar targeting of the inactive X during S phase: Evidence for a role in the maintenance of silencing. Cell 2007;129:693-706.
-
(2007)
Cell
, vol.129
, pp. 693-706
-
-
Zhang, L.F.1
Huynh, K.D.2
Lee, J.T.3
-
13
-
-
0032805149
-
Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation
-
Csankovszki G, Panning B, Bates B et al. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 1999;22:323-324.
-
(1999)
Nat Genet
, vol.22
, pp. 323-324
-
-
Csankovszki, G.1
Panning, B.2
Bates, B.3
-
14
-
-
0034081857
-
Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos
-
Costanzi C, Stein P, Worrad DM et al. Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos. Development 2000; 127:2283-2289.
-
(2000)
Development
, vol.127
, pp. 2283-2289
-
-
Costanzi, C.1
Stein, P.2
Worrad, D.M.3
-
15
-
-
0037166937
-
Cell cycledependent localization of macroH2A in chromatin of the inactive X chromosome
-
Chadwick BP, Willard HF. Cell cycledependent localization of macroH2A in chromatin of the inactive X chromosome. J Cell Biol 2002;157:1113-1123.
-
(2002)
J Cell Biol
, vol.157
, pp. 1113-1123
-
-
Chadwick, B.P.1
Willard, H.F.2
-
16
-
-
79958815889
-
Histone variant macroH2A confers resistance to nuclear reprogramming
-
Pasque V, Gillich A, Garrett N et al. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J 2011;30: 2373-2387.
-
(2011)
EMBO J
, vol.30
, pp. 2373-2387
-
-
Pasque, V.1
Gillich, A.2
Garrett, N.3
-
17
-
-
84856839544
-
Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to Xenopus oocytes
-
Pasque V, Halley-Stott RP, Gillich A et al. Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to Xenopus oocytes. Nucleus 2011;2:533-539.
-
(2011)
Nucleus
, vol.2
, pp. 533-539
-
-
Pasque, V.1
Halley-Stott, R.P.2
Gillich, A.3
-
18
-
-
84875923762
-
Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming
-
Gao Y, Chen J, Li K et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 2013;12:453-469.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 453-469
-
-
Gao, Y.1
Chen, J.2
Li, K.3
-
19
-
-
84875370281
-
NANOG-dependent function of TET1 and TET2 in establishment of pluripotency
-
Costa Y, Ding J, Theunissen TW et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 2013;495:370-374.
-
(2013)
Nature
, vol.495
, pp. 370-374
-
-
Costa, Y.1
Ding, J.2
Theunissen, T.W.3
-
20
-
-
84884136941
-
DNA demethylation in pluripotency and reprogramming: The role of tet proteins and cell division
-
Bagci H, Fisher AG. DNA demethylation in pluripotency and reprogramming: The role of tet proteins and cell division. Cell Stem Cell 2013;13:265-269.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 265-269
-
-
Bagci, H.1
Fisher, A.G.2
-
21
-
-
0034711445
-
X-Chromosome inactivation in cloned mouse embryos
-
Eggan K, Akutsu H, Hochedlinger K et al. X-Chromosome inactivation in cloned mouse embryos. Science 2000;290:1578-1581.
-
(2000)
Science
, vol.290
, pp. 1578-1581
-
-
Eggan, K.1
Akutsu, H.2
Hochedlinger, K.3
-
22
-
-
24144478374
-
Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte
-
Bao S, Miyoshi N, Okamoto I et al. Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte. EMBO Rep 2005;6:748-754.
-
(2005)
EMBO Rep
, vol.6
, pp. 748-754
-
-
Bao, S.1
Miyoshi, N.2
Okamoto, I.3
-
23
-
-
0035816538
-
Epigenetic instability in ES cells and cloned mice
-
Humpherys D, Eggan K, Akutsu H et al. Epigenetic instability in ES cells and cloned mice. Science 2001;293:95-97.
-
(2001)
Science
, vol.293
, pp. 95-97
-
-
Humpherys, D.1
Eggan, K.2
Akutsu, H.3
-
24
-
-
14544271451
-
X chromosome reactivation and regulation in cloned embryos
-
Nolen LD, Gao S, Han Z et al. X chromosome reactivation and regulation in cloned embryos. Dev Biol 2005;279:525-540.
-
(2005)
Dev Biol
, vol.279
, pp. 525-540
-
-
Nolen, L.D.1
Gao, S.2
Han, Z.3
-
25
-
-
0942268867
-
Reactivation of the paternal X chromosome in early mouse embryos
-
Mak W, Nesterova TB, de Napoles M et al. Reactivation of the paternal X chromosome in early mouse embryos. Science 2004; 303:666-669.
-
(2004)
Science
, vol.303
, pp. 666-669
-
-
Mak, W.1
Nesterova, T.B.2
De Napoles, M.3
-
26
-
-
0942268864
-
Epigenetic dynamics of imprinted X inactivation during early mouse development
-
Okamoto I, Otte AP, Allis CD et al. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 2004;303:644-649.
-
(2004)
Science
, vol.303
, pp. 644-649
-
-
Okamoto, I.1
Otte, A.P.2
Allis, C.D.3
-
27
-
-
34249909232
-
Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution
-
Maherali N, Sridharan R, Xie W et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007;1:55-70.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 55-70
-
-
Maherali, N.1
Sridharan, R.2
Xie, W.3
-
28
-
-
79957557521
-
Xchromosome epigenetic reprogramming in pluripotent stem cells via noncoding genes
-
Kim DH, Jeon Y, Anguera MC et al. Xchromosome epigenetic reprogramming in pluripotent stem cells via noncoding genes. Semin Cell Dev Biol 2011;22:336-342.
-
(2011)
Semin Cell Dev Biol
, vol.22
, pp. 336-342
-
-
Kim, D.H.1
Jeon, Y.2
Anguera, M.C.3
-
29
-
-
0036948659
-
Xist RNA and the mechanism of X chromosome inactivation
-
Plath K, Mlynarczyk-Evans S, Nusinow DA et al. Xist RNA and the mechanism of X chromosome inactivation. Ann Rev Genet 2002;36:233-278.
-
(2002)
Ann Rev Genet
, vol.36
, pp. 233-278
-
-
Plath, K.1
Mlynarczyk-Evans, S.2
Nusinow, D.A.3
-
30
-
-
79952846468
-
Progress in understanding reprogramming to the induced pluripotent state
-
Plath K, Lowry WE. Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet 2011;12:253-265.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 253-265
-
-
Plath, K.1
Lowry, W.E.2
-
31
-
-
84879603009
-
Reactivation of the inactive X chromosome in development and reprogramming
-
Ohhata T, Wutz A. Reactivation of the inactive X chromosome in development and reprogramming. Cell Mol Life Sci 2013;70: 2443-2461.
-
(2013)
Cell Mol Life Sci
, vol.70
, pp. 2443-2461
-
-
Ohhata, T.1
Wutz, A.2
-
32
-
-
78650515020
-
Direct reprogramming of fibroblasts into epiblast stem cells
-
Han DW, Greber B, Wu G et al. Direct reprogramming of fibroblasts into epiblast stem cells. Nat Cell Biol 2011;13:66-71.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 66-71
-
-
Han, D.W.1
Greber, B.2
Wu, G.3
-
33
-
-
39149115929
-
Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse
-
Stadtfeld M, Maherali N, Breault DT et al. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2008;2:230-240.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 230-240
-
-
Stadtfeld, M.1
Maherali, N.2
Breault, D.T.3
-
34
-
-
84865112255
-
The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming
-
Mansour AA, Gafni O, Weinberger L et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 2012;488:409-413.
-
(2012)
Nature
, vol.488
, pp. 409-413
-
-
Mansour, A.A.1
Gafni, O.2
Weinberger, L.3
-
35
-
-
84872442222
-
Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency
-
Pasque V, Radzisheuskaya A, Gillich A et al. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J Cell Sci 2012;125:6094-6104.
-
(2012)
J Cell Sci
, vol.125
, pp. 6094-6104
-
-
Pasque, V.1
Radzisheuskaya, A.2
Gillich, A.3
-
36
-
-
0037093508
-
Oct4 distribution and level in mouse clones: Consequences for pluripotency
-
Boiani M, Eckardt S, Scholer HR et al. Oct4 distribution and level in mouse clones: Consequences for pluripotency. Genes Dev 2002;16:1209-1219.
-
(2002)
Genes Dev
, vol.16
, pp. 1209-1219
-
-
Boiani, M.1
Eckardt, S.2
Scholer, H.R.3
-
37
-
-
67849133023
-
IPS cells can support full-term development of tetraploid blastocyst-complemented embryos
-
Kang L, Wang J, Zhang Y et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 2009;5:135-138.
-
(2009)
Cell Stem Cell
, vol.5
, pp. 135-138
-
-
Kang, L.1
Wang, J.2
Zhang, Y.3
-
38
-
-
38649094609
-
Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells
-
Brambrink T, Foreman R, Welstead GG et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2008;2:151-159.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 151-159
-
-
Brambrink, T.1
Foreman, R.2
Welstead, G.G.3
-
39
-
-
84875774142
-
Promoting reprogramming by FGF2 reveals that the extracellular matrix is a barrier for reprogramming fibroblasts to pluripotency
-
Jiao J, Dang Y, Yang Y et al. Promoting reprogramming by FGF2 reveals that the extracellular matrix is a barrier for reprogramming fibroblasts to pluripotency. Stem Cells 2013;31:729-740.
-
(2013)
Stem Cells
, vol.31
, pp. 729-740
-
-
Jiao, J.1
Dang, Y.2
Yang, Y.3
-
40
-
-
77956320116
-
Functional genomics reveals a BMPdriven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
-
Samavarchi-Tehrani P, Golipour A, David L et al. Functional genomics reveals a BMPdriven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010;7:64-77.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 64-77
-
-
Samavarchi-Tehrani, P.1
Golipour, A.2
David, L.3
-
41
-
-
77957551870
-
A mesenchymalto- epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
-
Li R, Liang J, Ni S et al. A mesenchymalto- epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010;7:51-63.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 51-63
-
-
Li, R.1
Liang, J.2
Ni, S.3
-
42
-
-
34447528757
-
New cell lines from mouse epiblast share defining features with human embryonic stem cells
-
Tesar PJ, Chenoweth JG, Brook FA et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007;448:196-199.
-
(2007)
Nature
, vol.448
, pp. 196-199
-
-
Tesar, P.J.1
Chenoweth, J.G.2
Brook, F.A.3
-
43
-
-
34447527158
-
Derivation of pluripotent epiblast stem cells from mammalian embryos
-
Brons IG, Smithers LE, Trotter MW et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007;448: 191-195.
-
(2007)
Nature
, vol.448
, pp. 191-195
-
-
Brons, I.G.1
Smithers, L.E.2
Trotter, M.W.3
-
44
-
-
84861893874
-
Pluripotency and nuclear reprogramming
-
Dejosez M, Zwaka TP. Pluripotency and nuclear reprogramming. Ann Rev Biochem 2012;81:737-765.
-
(2012)
Ann Rev Biochem
, vol.81
, pp. 737-765
-
-
Dejosez, M.1
Zwaka, T.P.2
-
45
-
-
54949105021
-
Promotion of reprogramming to ground state pluripotency by signal inhibition
-
Silva J, Barrandon O, Nichols J et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 2008;6:e253.
-
(2008)
PLoS Biol
, vol.6
, pp. e253
-
-
Silva, J.1
Barrandon, O.2
Nichols, J.3
-
46
-
-
33751168747
-
From nuclear transfer to nuclear reprogramming: The reversal of cell differentiation
-
Gurdon JB. From nuclear transfer to nuclear reprogramming: The reversal of cell differentiation. Ann Rev Cell Dev Biol 2006;22:1-22.
-
(2006)
Ann Rev Cell Dev Biol
, vol.22
, pp. 1-22
-
-
Gurdon, J.B.1
|