메뉴 건너뛰기




Volumn 7, Issue 8, 2014, Pages 3640-3649

Sparse non-negative matrix factorization on GPUs for hyperspectral unmixing

Author keywords

Graphics processing units (GPUs); hyperspectral; non negative matrix factorization (NMF); parallel optimization; sparsity; unmixing

Indexed keywords

GRAPHICS PROCESSING UNITS; HYPERSPECTRAL; NONNEGATIVE MATRIX FACTORIZATION; PARALLEL OPTIMIZATION; SPARSITY; UNMIXING;

EID: 84907980849     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2315045     Document Type: Article
Times cited : (28)

References (35)
  • 2
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • Apr
    • J.M. Bioucas-Dias, A. Plaza, N. Dobigeon,M. Parente et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1    Plaza, A.2    Dobigeon, N.3    Parente, M.4
  • 3
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data
    • Jan
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Does independent component analysis play a role in unmixing hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 6
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. M. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.1    Bioucas-Dias, J.M.2
  • 7
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • San Diego, CA, USA
    • M. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Imaging Spectrom. V, San Diego, CA, USA, 1999, pp. 266-275.
    • (1999) Proc. SPIE Imaging Spectrom. V , pp. 266-275
    • Winter, M.1
  • 8
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • Oct
    • C. I. Chang, C. C. Wu, W. Liu, and Y. C. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.I.1    Wu, C.C.2    Liu, W.3    Ouyang, Y.C.4
  • 9
    • 70349199204 scopus 로고    scopus 로고
    • A convex analysis based minimumvolume enclosing simplex algorithm for hyperspectral unmixing
    • Taipei, Taiwan
    • C. Y. Chi, T. H. Chan, and W. K. Ma, "A convex analysis based minimumvolume enclosing simplex algorithm for hyperspectral unmixing," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Taipei, Taiwan, 2009, pp. 4418-4432.
    • (2009) Proc. IEEE Int. Conf. Acoust. Speech Signal Process , pp. 4418-4432
    • Chi, C.Y.1    Chan, T.H.2    Ma, W.K.3
  • 10
    • 67649830104 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • Boston, MA, USA
    • J. Li and J. M. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Boston, MA, USA, 2008, pp. 250-253.
    • (2008) Proc. IEEE Int. Geosci. Remote Sens. Symp , pp. 250-253
    • Li, J.1    Bioucas-Dias, J.M.2
  • 12
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee, H. S. Seung et al., "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 88-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 88-791
    • Lee, D.D.1    Seung, H.S.2
  • 13
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 14
    • 42549137380 scopus 로고    scopus 로고
    • Minimum distance constrained non-negative matrix factorization for the endmember extraction of hyperspectral images
    • Y. Yu, S. Guo, and W. Sun, "Minimum distance constrained non-negative matrix factorization for the endmember extraction of hyperspectral images," Proc. SPIE, vol. 6790, p. 679015, 2007.
    • (2007) Proc. SPIE , vol.6790 , pp. 679015
    • Yu, Y.1    Guo, S.2    Sun, W.3
  • 16
    • 79952957026 scopus 로고    scopus 로고
    • Blind spectral unmixing based on sparse nonnegative matrix factorization
    • Apr
    • Z. Yang, G. Zhou, S. Xie, S. Ding, J. Yang, and J. Zhang, "Blind spectral unmixing based on sparse nonnegative matrix factorization," IEEE Trans. Image Process., vol. 20, no. 4, pp. 1112-1125, Apr. 2011.
    • (2011) IEEE Trans. Image Process , vol.20 , Issue.4 , pp. 1112-1125
    • Yang, Z.1    Zhou, G.2    Xie, S.3    Ding, S.4    Yang, J.5    Zhang, J.6
  • 17
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization
    • Nov
    • Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, "Hyperspectral unmixing via sparsity-constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 18
    • 84939263140 scopus 로고    scopus 로고
    • Real-time implementation of remotely sensed hyperspectral image unmixing on gpus
    • to be published, [Online]
    • S. Sanchez, R. Ramalho, L. Sousa, and A. Plaza, "Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs," J. Real- Time Image Process., to be published, doi: 10.1007/s11554-012-0269-2 [Online]. Available: http://link.springer.com/article/10.1007%2Fs11554-012-0269-2.
    • J. Real- Time Image Process
    • Sanchez, S.1    Ramalho, R.2    Sousa, L.3    Plaza, A.4
  • 20
    • 80052319893 scopus 로고    scopus 로고
    • Recent developments in high performance computing for remote sensing: A review
    • Sep
    • C. A. Lee, S. D. Gasster, A. Plaza et al., "Recent developments in high performance computing for remote sensing: A review," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3, pp. 508-527, Sep. 2011.
    • (2011) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.4 , Issue.3 , pp. 508-527
    • Lee, C.A.1    Gasster, S.D.2    Plaza, A.3
  • 22
    • 84898596791 scopus 로고    scopus 로고
    • Real-time implementation of the pixel purity index algorithm for endmember identification on gpus
    • May
    • X. Wu, B. Huang, A. Plaza, Y. Li, and C. Wu, "Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 5, pp. 955-959, May 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , Issue.5 , pp. 955-959
    • Wu, X.1    Huang, B.2    Plaza, A.3    Li, Y.4    Wu, C.5
  • 23
    • 77950961479 scopus 로고    scopus 로고
    • Parallel implementation of endmember extraction algorithms using nvidia graphical processing units
    • A. Plaza, J. Plaza, and S. Sanchez, "Parallel implementation of endmember extraction algorithms using NVIDIA graphical processing units," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2009, vol. 5, pp. 208-211.
    • (2009) Proc. IEEE Int. Geosci. Remote Sens. Symp , vol.5 , pp. 208-211
    • Plaza, A.1    Plaza, J.2    Sanchez, S.3
  • 24
    • 84255182018 scopus 로고    scopus 로고
    • Parallel implementation of n-findr algorithm for hyperspectral imagery on hybrid multiple-core cpu and gpu parallel platform
    • W. Luo, "Parallel implementation of N-FINDR algorithm for hyperspectral imagery on hybrid multiple-core CPU and GPU parallel platform," Proc. SPIE, vol. 8006, p. 80060A-6, 2011.
    • (2011) Proc. SPIE , vol.8006 , pp. 80060A-6
    • Luo, W.1
  • 26
    • 84869509435 scopus 로고    scopus 로고
    • Real-time implementation of the vertex component analysis algorithm on gpus
    • Mar
    • A. Barberis, G. Danese, F. Leporati, A. Plaza, and E. Torti, "Real-time implementation of the vertex component analysis algorithm on GPUs," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 251-255, Mar. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett , vol.10 , Issue.2 , pp. 251-255
    • Barberis, A.1    Danese, G.2    Leporati, F.3    Plaza, A.4    Torti, E.5
  • 27
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar
    • D. C. Heinz et al., "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1
  • 30
    • 81855194806 scopus 로고    scopus 로고
    • Unmixing of hyperspectral images using bayesian non-negative matrix factorization with volume prior
    • M. Arngren, M. N. Schmidt, and J. Larsen, "Unmixing of hyperspectral images using Bayesian non-negative matrix factorization with volume prior," J. Signal Process. Syst., vol. 65, no. 3, pp. 479-496, 2011.
    • (2011) J. Signal Process. Syst , vol.65 , Issue.3 , pp. 479-496
    • Arngren, M.1    Schmidt, M.N.2    Larsen, J.3
  • 34


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.