메뉴 건너뛰기




Volumn 105, Issue 489, 2010, Pages 181-193

Semiparametric mean–covariance regression analysis for longitudinal data

Author keywords

Covariance misspecification; Efficiency; Generalized estimating equation; Longitudinal data; Modified Cholesky decomposition; Semiparametric models

Indexed keywords


EID: 77952560131     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1198/jasa.2009.tm08485     Document Type: Article
Times cited : (92)

References (30)
  • 1
    • 0031775898 scopus 로고    scopus 로고
    • Nonparametric Estimation of Covariance Structure in Longitudinal Data
    • [181]
    • Diggle, P. J., and Verbyla, A. P. (1998), “Nonparametric Estimation of Covariance Structure in Longitudinal Data,” Biometrics, 54, 403–415. [181]
    • (1998) Biometrics , vol.54 , pp. 403-415
    • Diggle, P.J.1    Verbyla, A.P.2
  • 3
    • 69049121379 scopus 로고    scopus 로고
    • Semiparametric Estimation of Covariance Matrices for Longitudinal Data
    • [182,188,189]
    • Fan, J., and Wu, Y. (2008), “Semiparametric Estimation of Covariance Matrices for Longitudinal Data,” Journal of the American Statistical Association, 103, 1520–1533. [182,188,189]
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 1520-1533
    • Fan, J.1    Wu, Y.2
  • 4
    • 55349144848 scopus 로고    scopus 로고
    • High Dimensional Covariance Matrix Estimation Using a Factor Model
    • [181
    • Fan, J., Fan, Y., and Lv, J. (2008), “High Dimensional Covariance Matrix Estimation Using a Factor Model”, Journal of Econometrics, 147, 186–197. [181]
    • (2008) Journal of Econometrics , vol.147 , pp. 186-197
    • Fan, J.1    Fan, Y.2    Lv, J.3
  • 5
    • 34250768880 scopus 로고    scopus 로고
    • Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function
    • [182,185,187,189,190]
    • Fan, J., Huang, T., and Li, R. Z. (2007), “Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function,” Journal of the American Statistical Association, 35, 632–641. [182,185,187,189,190]
    • (2007) Journal of the American Statistical Association , vol.35 , pp. 632-641
    • Fan, J.1    Huang, T.2    Li, R.Z.3
  • 7
    • 0030215506 scopus 로고    scopus 로고
    • Bivariate Tensor-Product B-Splines in a Partly Linear Model
    • [182,184,191]
    • He, X., and Shi, P. (1996), “Bivariate Tensor-Product B-Splines in a Partly Linear Model,” Journal of Multivariate Analysis, 58, 162–181. [182,184,191]
    • (1996) Journal of Multivariate Analysis , vol.58 , pp. 162-181
    • He, X.1    Shi, P.2
  • 8
    • 29144468067 scopus 로고    scopus 로고
    • Robust Estimation in Generalized Partial Linear Models for Clustered Data
    • [181,183,185,190,191]
    • He, X., Fung, W. K., and Zhu, Z. Y. (2005), “Robust Estimation in Generalized Partial Linear Models for Clustered Data,” Journal of the American Statistical Association, 472, 1176–1184. [181,183,185,190,191]
    • (2005) Journal of the American Statistical Association , vol.472 , pp. 1176-1184
    • He, X.1    Fung, W.K.2    Zhu, Z.Y.3
  • 9
    • 0344128624 scopus 로고    scopus 로고
    • Estimating in a Semiparametric Model for Longitudinal Data With Unspecified Dependence Structure
    • [181,182,184]
    • He, X., Zhu, Z. Y., and Fung, W. K. (2002), “Estimating in a Semiparametric Model for Longitudinal Data With Unspecified Dependence Structure,” Biometrika, 89, 579–590. [181,182,184]
    • (2002) Biometrika , vol.89 , pp. 579-590
    • He, X.1    Zhu, Z.Y.2    Fung, W.K.3
  • 11
    • 54349104907 scopus 로고    scopus 로고
    • Profile-Kernel Likelihood InferenceWith Diverging Number of Parameters
    • [190]
    • Lam, C., and Fan, J. (2008), “Profile-Kernel Likelihood InferenceWith Diverging Number of Parameters,” The Annals of Statistics, 36, 2232–2260. [190]
    • (2008) The Annals of Statistics , vol.36 , pp. 2232-2260
    • Lam, C.1    Fan, J.2
  • 12
    • 77649173768 scopus 로고
    • Longitudinal Data Analysis Using Generalized Linear Models
    • [181,182,184]
    • Liang, K. Y., and Zeger, S. L. (1986), “Longitudinal Data Analysis Using Generalized Linear Models,” Biometrika, 73, 13–22. [181,182,184]
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 13
    • 0442312205 scopus 로고    scopus 로고
    • Semiparametric Regression for Clustered Data Using Generalized Estimating Equations
    • [181]
    • Lin, X., and Carroll, R. J. (2001), “Semiparametric Regression for Clustered Data Using Generalized Estimating Equations,” Journal of the American Statistical Association, 96, 1045–1056. [181]
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1045-1056
    • Lin, X.1    Carroll, R.J.2
  • 14
    • 33645030026 scopus 로고    scopus 로고
    • Semiparametric Estimation in General Repeated Measures Problems
    • [181]
    • Lin, X., and Carroll, R. J. (2006), “Semiparametric Estimation in General Repeated Measures Problems,” Journal of the Royal Statistical Society, Ser. B, 68, 69–88. [181]
    • (2006) Journal of the Royal Statistical Society, Ser. B , vol.68 , pp. 69-88
    • Lin, X.1    Carroll, R.J.2
  • 15
    • 3843133868 scopus 로고    scopus 로고
    • Model Selection for Joint Mean– Covariance Structures in Longitudinal Studies
    • [181]
    • Pan, J., and Mackenzie, G. (2003), “Model Selection for Joint Mean– Covariance Structures in Longitudinal Studies,” Biometrika, 90, 239–244. [181]
    • (2003) Biometrika , vol.90 , pp. 239-244
    • Pan, J.1    Mackenzie, G.2
  • 16
    • 0012806293 scopus 로고    scopus 로고
    • Joint Mean–Covariance ModelsWith Applications to Longitudinal Data: Unconstrained Parameterisation
    • [181,182]
    • Pourahmadi, M. (1999), “Joint Mean–Covariance ModelsWith Applications to Longitudinal Data: Unconstrained Parameterisation,” Biometrika, 86, 677–690. [181,182]
    • (1999) Biometrika , vol.86 , pp. 677-690
    • Pourahmadi, M.1
  • 17
    • 0001304198 scopus 로고    scopus 로고
    • Maximum Likelihood Estimation of Generalised Linear Models for Multivariate Normal Covariance Matrix
    • Pourahmadi, M. (2000), “Maximum Likelihood Estimation of Generalised Linear Models for Multivariate Normal Covariance Matrix,” Biometrika, 87, 425–435. [181]
    • (2000) Biometrika , vol.87 , pp. 425-435
    • Pourahmadi, M.1
  • 18
    • 0026010582 scopus 로고
    • Estimating Equations for Parameters in Means and Covariances of Multivariate Discrete and Continuous Responses
    • [181]
    • Prentice, R. L., and Zhao, L. P. (1991), “Estimating Equations for Parameters in Means and Covariances of Multivariate Discrete and Continuous Responses,” Biometrics, 47, 825–839. [181]
    • (1991) Biometrics , vol.47 , pp. 825-839
    • Prentice, R.L.1    Zhao, L.P.2
  • 21
    • 0001227575 scopus 로고
    • Additive Regression and Other Nonparametric Models
    • [185]
    • Stone, C. (1985), “Additive Regression and Other Nonparametric Models,” The Annals of Statistics, 13, 689–705. [185]
    • (1985) The Annals of Statistics , vol.13 , pp. 689-705
    • Stone, C.1
  • 22
    • 3543029715 scopus 로고    scopus 로고
    • Marginal Nonparametric Kernel Regression Accounting Within-Subject Correlation
    • [181
    • Wang, N. (2003), “Marginal Nonparametric Kernel Regression Accounting Within-Subject Correlation,” Biometrika, 90, 29–42. [181]
    • (2003) Biometrika , vol.90 , pp. 29-42
    • Wang, N.1
  • 23
    • 14944358963 scopus 로고    scopus 로고
    • Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data
    • [181]
    • Wang, N., Carroll, R. J., and Lin, X. (2005), “Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data,” Journal of the American Statistical Association, 100, 147–157. [181]
    • (2005) Journal of the American Statistical Association , vol.100 , pp. 147-157
    • Wang, N.1    Carroll, R.J.2    Lin, X.3
  • 24
    • 3843096981 scopus 로고    scopus 로고
    • Working Correlation Structure Misspecification, Estimation and Covariate Design: Implications for Generalised Estimating Equations Performance
    • [181]
    • Wang, Y. G., and Carey, V. (2003), “Working Correlation Structure Misspecification, Estimation and Covariate Design: Implications for Generalised Estimating Equations Performance,” Biometrika, 90, 29–41. [181]
    • (2003) Biometrika , vol.90 , pp. 29-41
    • Wang, Y.G.1    Carey, V.2
  • 25
    • 0035998825 scopus 로고    scopus 로고
    • Marginal Longitudinal Nonparametric Regression: Locality and Efficiency of Spline and Kernel Methods
    • [181]
    • Welsh, A. H., Lin, X., and Carroll, R. J. (2002), “Marginal Longitudinal Nonparametric Regression: Locality and Efficiency of Spline and Kernel Methods,” Journal of the American Statistical Association, 97, 482–493. [181]
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 482-493
    • Welsh, A.H.1    Lin, X.2    Carroll, R.J.3
  • 27
    • 3843104546 scopus 로고    scopus 로고
    • Nonparametric Estimation of Large Covariance Matrices of Longitudinal Data
    • [181]
    • Wu, W., and Pourahmadi, M. (2003), “Nonparametric Estimation of Large Covariance Matrices of Longitudinal Data,” Biometrika, 90, 831–844. [181]
    • (2003) Biometrika , vol.90 , pp. 831-844
    • Wu, W.1    Pourahmadi, M.2
  • 28
    • 22944450368 scopus 로고    scopus 로고
    • Asymptotics for Generalized Estimating Equations With Large Cluster Sizes
    • [190]
    • Xie, M., and Yang, Y. (2003), “Asymptotics for Generalized Estimating Equations With Large Cluster Sizes,” The Annals of Statistics, 31, 310–347. [190]
    • (2003) The Annals of Statistics , vol.31 , pp. 310-347
    • Xie, M.1    Yang, Y.2
  • 29
    • 33645780628 scopus 로고    scopus 로고
    • Modelling Covariance Structures in Generalized Estimating Equations for Longitudinal Data
    • [181-186,188,190]
    • Ye, H., and Pan, J. (2006), “Modelling Covariance Structures in Generalized Estimating Equations for Longitudinal Data,” Biometrika, 93, 927–941. [181-186,188,190]
    • (2006) Biometrika , vol.93 , pp. 927-941
    • Ye, H.1    Pan, J.2
  • 30
    • 0028153316 scopus 로고
    • Semiparametric Models for Longitudinal Data With Application to CD4 Cell Numbers in HIV Seroconverters
    • [185,186]
    • Zeger, S. L., and Diggle, P. J. (1994), “Semiparametric Models for Longitudinal Data With Application to CD4 Cell Numbers in HIV Seroconverters,” Biometrics, 50, 689–699. [185,186]
    • (1994) Biometrics , vol.50 , pp. 689-699
    • Zeger, S.L.1    Diggle, P.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.