메뉴 건너뛰기




Volumn 54, Issue 5, 2008, Pages 2376-2382

Information consistency of nonparametric Gaussian process methods

Author keywords

Bayesian prediction; Eigenvalue asymptotics; Gaussian process; Information consistency; Nonparametric statistics; Online learning; Posterior consistency; Regret bound

Indexed keywords

ASYMPTOTIC ANALYSIS; CONVERGENCE OF NUMERICAL METHODS; EIGENVALUES AND EIGENFUNCTIONS; HILBERT SPACES; MATHEMATICAL MODELS;

EID: 43749083506     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2007.915707     Document Type: Article
Times cited : (93)

References (25)
  • 1
    • 0003171807 scopus 로고
    • On the consistency of Bayes estimates
    • P. Diaconis and D. Freedman, "On the consistency of Bayes estimates," Ann. Statist., vol. 14, pp. 1-26, 1986.
    • (1986) Ann. Statist , vol.14 , pp. 1-26
    • Diaconis, P.1    Freedman, D.2
  • 2
    • 0025430804 scopus 로고
    • Information-theoretic asymptotics of Bayes methods
    • May
    • B. Clarke and A. Barron, "Information-theoretic asymptotics of Bayes methods," IEEE Trans. Inf. Theory, vol. 36, no. 3, pp. 453-471, May 1990.
    • (1990) IEEE Trans. Inf. Theory , vol.36 , Issue.3 , pp. 453-471
    • Clarke, B.1    Barron, A.2
  • 3
    • 0009145182 scopus 로고    scopus 로고
    • Information-theoretic characterization of Bayes performance and the choice of priors in parametric and nonparametric problems
    • J. Bernardo, J. Berger, A. Dawid, and A. Smith, Eds
    • A. Barron, "Information-theoretic characterization of Bayes performance and the choice of priors in parametric and nonparametric problems," in Bayesian Statistics 6, J. Bernardo, J. Berger, A. Dawid, and A. Smith, Eds., 1998, pp. 27-52.
    • (1998) Bayesian Statistics 6 , pp. 27-52
    • Barron, A.1
  • 4
    • 0033438067 scopus 로고    scopus 로고
    • The consistency of posterior distributions in nonparametric problems
    • A. Barron, M. Schervish, and L. Wasserman, "The consistency of posterior distributions in nonparametric problems," Ann. Statist. vol. 2, no. 27, pp. 536-561, 1999.
    • (1999) Ann. Statist , vol.2 , Issue.27 , pp. 536-561
    • Barron, A.1    Schervish, M.2    Wasserman, L.3
  • 5
    • 0035539848 scopus 로고    scopus 로고
    • Rates of convergence of posterior distributions
    • X. Shen and L. Wasserman, "Rates of convergence of posterior distributions," Ann. Statist., vol. 29, no. 3, pp. 687-714, 2001.
    • (2001) Ann. Statist , vol.29 , Issue.3 , pp. 687-714
    • Shen, X.1    Wasserman, L.2
  • 6
    • 84968466142 scopus 로고
    • Asymptotic behavior of the eigenvalues of certain integral equations
    • H. Widom, "Asymptotic behavior of the eigenvalues of certain integral equations," Trans. Amer. Math. Soc., vol. 109, no. 2, pp. 278-295, 1963.
    • (1963) Trans. Amer. Math. Soc , vol.109 , Issue.2 , pp. 278-295
    • Widom, H.1
  • 7
    • 0031326925 scopus 로고    scopus 로고
    • Mutual information, metric entropy and cumulative relative entropy risk
    • D. Haussler and M. Opper, "Mutual information, metric entropy and cumulative relative entropy risk," Ann. Statist., vol. 25, no. 6, pp. 2451-2492, 1997.
    • (1997) Ann. Statist , vol.25 , Issue.6 , pp. 2451-2492
    • Haussler, D.1    Opper, M.2
  • 8
    • 43749114363 scopus 로고    scopus 로고
    • Worst case prediction over sequences under log loss
    • N. Cesa-Bianchi and G. Lugosi, "Worst case prediction over sequences under log loss," Mach. Learn., vol. 43, 2001.
    • (2001) Mach. Learn , vol.43
    • Cesa-Bianchi, N.1    Lugosi, G.2
  • 9
    • 12444291490 scopus 로고    scopus 로고
    • Gaussian processes for machine learning
    • M. Seeger, "Gaussian processes for machine learning," Int. J. Neural Syst., vol. 14, no. 2, pp. 69-106, 2004.
    • (2004) Int. J. Neural Syst , vol.14 , Issue.2 , pp. 69-106
    • Seeger, M.1
  • 12
    • 0002978835 scopus 로고
    • Curve fitting and optimal design
    • A. O'Hagan, "Curve fitting and optimal design," J. Roy. Stat. Soc. B, vol. 40, no. 1, pp. 1-42, 1978.
    • (1978) J. Roy. Stat. Soc. B , vol.40 , Issue.1 , pp. 1-42
    • O'Hagan, A.1
  • 13
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn, "Theory of reproducing kernels," Trans. Amer. Math. Soc., vol. 68, no. 3, pp. 337-404, 1950.
    • (1950) Trans. Amer. Math. Soc , vol.68 , Issue.3 , pp. 337-404
    • Aronszajn, N.1
  • 15
    • 84864042783 scopus 로고    scopus 로고
    • Worst-case bounds for Gaussian process models
    • Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT Press
    • S. Kakade, M. Seeger, and D. Foster, "Worst-case bounds for Gaussian process models," in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT Press, 2006.
    • (2006) Advances in Neural Information Processing Systems 18
    • Kakade, S.1    Seeger, M.2    Foster, D.3
  • 16
    • 43749090297 scopus 로고    scopus 로고
    • Online bounds for Bayesian algorithms
    • S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press
    • S. Kakade and A Ng, "Online bounds for Bayesian algorithms," in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004.
    • (2004) Advances in Neural Information Processing Systems 16
    • Kakade, S.1    Ng, A.2
  • 17
    • 0343244538 scopus 로고    scopus 로고
    • General bounds on Bayes errors for regression with Gaussian processes
    • M. Kearns, S. Solla, and D. Cohn, Eds. Cambridge, MA: MIT Press
    • M. Opper and F. Vivarelli, "General bounds on Bayes errors for regression with Gaussian processes," in Advances in Neural Information Processing Systems 11, M. Kearns, S. Solla, and D. Cohn, Eds. Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Neural Information Processing Systems 11
    • Opper, M.1    Vivarelli, F.2
  • 18
    • 0039813137 scopus 로고    scopus 로고
    • Gaussian regression and optimal finite dimensional linear models
    • Neural Networks and Machine Learning, C. Bishop, Ed. New York: Springer
    • H. Zhu, C. K. I. Williams, R. Rohwer, and M. Morciniec, "Gaussian regression and optimal finite dimensional linear models," in Neural Networks and Machine Learning, ser. NATO ASI, C. Bishop, Ed. New York: Springer, 1998, vol. 168.
    • (1998) ser. NATO ASI , vol.168
    • Zhu, H.1    Williams, C.K.I.2    Rohwer, R.3    Morciniec, M.4
  • 19
    • 33847402605 scopus 로고    scopus 로고
    • Learning bounds for a generalized family of Bayesian posterior distributions
    • S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press
    • T. Zhang, "Learning bounds for a generalized family of Bayesian posterior distributions," in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004.
    • (2004) Advances in Neural Information Processing Systems 16
    • Zhang, T.1
  • 20
    • 33847361463 scopus 로고    scopus 로고
    • From ε-entropy to KL-entropy: Analysis of minimum information complexity density estimation
    • T. Zhang, "From ε-entropy to KL-entropy: Analysis of minimum information complexity density estimation," Ann. Statist., vol. 34, pp. 2180-2210, 2006.
    • (2006) Ann. Statist , vol.34 , pp. 2180-2210
    • Zhang, T.1
  • 22
    • 0004267646 scopus 로고
    • Princeton, NJ: Princeton Univ. Press
    • R. Rockafellar, Convex Analysis. Princeton, NJ: Princeton Univ. Press, 1970.
    • (1970) Convex Analysis
    • Rockafellar, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.