-
1
-
-
77955644289
-
Mammalian microRNAs predominantly act to decrease target mRNA levels
-
Guo H, Ingolia NT, Weissman JS et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835–40. http://dx.doi.org/10.1038/nature09267
-
(2010)
Nature
, vol.466
, pp. 835-840
-
-
Guo, H.1
Ingolia, N.T.2
Weissman, J.S.3
-
2
-
-
83255186696
-
MicroRNA therapeutics
-
Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther 2011; 18: 1104–10. http://dx.doi.org/10.1038/gt.2011.50
-
(2011)
Gene Ther
, vol.18
, pp. 1104-1110
-
-
Broderick, J.A.1
Zamore, P.D.2
-
3
-
-
84903717510
-
Development of microRNA therapeutics is coming of age
-
Van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med 2014; 6: 851–64. http://dx.doi. org/10.15252/emmm.201100899
-
(2014)
EMBO Mol Med
, vol.6
, pp. 851-864
-
-
Van Rooij, E.1
Kauppinen, S.2
-
4
-
-
83255194160
-
Chemical modification and design of antimiRNA oligonucleotides
-
Lennox KA, Behlke MA. Chemical modification and design of antimiRNA oligonucleotides. Gene Ther 2011; 18: 1111–20. http://dx. doi.org/10.1038/gt.2011.100
-
(2011)
Gene Ther
, vol.18
, pp. 1111-1120
-
-
Lennox, K.A.1
Behlke, M.A.2
-
5
-
-
84883404077
-
Hepatotoxic potential of therapeutic oligonucleotides can be predicted from their sequence and modification pattern
-
Hagedorn PH, Yakimov V, Ottosen S et al. Hepatotoxic potential of therapeutic oligonucleotides can be predicted from their sequence and modification pattern. Nucleic Acid Ther 2013; 23: 302–10. http:// dx.doi.org/10.1089/nat.2013.0436
-
(2013)
Nucleic Acid Ther
, vol.23
, pp. 302-310
-
-
Hagedorn, P.H.1
Yakimov, V.2
Ottosen, S.3
-
6
-
-
39449097277
-
Overcoming the innate immune response to small interfering RNA
-
Judge A, Maclachlan I. Overcoming the innate immune response to small interfering RNA. Hum Gene Ther 2008; 19: 111–24. http:// dx.doi.org/10.1089/hum.2007.179
-
(2008)
Hum Gene Ther
, vol.19
, pp. 111-124
-
-
Judge, A.1
Maclachlan, I.2
-
7
-
-
79959199054
-
Nucleobase and Ribose modifications control immunostimulation by a microRNA-122- mimetic RNA
-
Peacock H, Fucini RV, Jayalath P et al. Nucleobase and Ribose modifications control immunostimulation by a microRNA-122- mimetic RNA. J Am Chem Soc 2011; 133: 9200–3. http://dx.doi. org/10.1021/ja202492e
-
(2011)
J Am Chem Soc
, vol.133
, pp. 9200-9203
-
-
Peacock, H.1
Fucini, R.V.2
Jayalath, P.3
-
8
-
-
84555178991
-
Dual or triple activation of TLR7, TLR8, and/or TLR9 by single stranded oligoribonucleotides
-
Forsbach A, Samulowitz U, Völp K et al. Dual or triple activation of TLR7, TLR8, and/or TLR9 by single stranded oligoribonucleotides. Nucleic Acid Ther 2011; 21: 423–36. http://dx.doi.org/10.1089/ nat.2011.0323
-
(2011)
Nucleic Acid Ther
, vol.21
, pp. 423-436
-
-
Forsbach, A.1
Samulowitz, U.2
Völp, K.3
-
9
-
-
84896997531
-
Quantum mechanical studies of DNA and LNA
-
Koch T, Shim I, Lindow M et al. Quantum mechanical studies of DNA and LNA. Nucleic Acid Ther 2014; 24: 139–48. http://dx.doi. org/10.1089/nat.2013.0465
-
(2014)
Nucleic Acid Ther
, vol.24
, pp. 139-148
-
-
Koch, T.1
Shim, I.2
Lindow, M.3
-
10
-
-
54949095836
-
Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation
-
Robbins M, Judge A, Ambegia E et al. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum Gene Ther 2008; 19: 991–9. http://dx.doi.org/10.1089/ hum.2008.131
-
(2008)
Hum Gene Ther
, vol.19
, pp. 991-999
-
-
Robbins, M.1
Judge, A.2
Ambegia, E.3
-
11
-
-
77449122322
-
MicroRNAs in cardiovascular biology and heart disease
-
Catalucci D, Gallo P, Condorelli G et al. MicroRNAs in cardiovascular biology and heart disease. Circ Cardiovasc Genet 2009; 2: 402–8. http://dx.doi.org/10.1161/CIRCGENETICS.109.857425
-
(2009)
Circ Cardiovasc Genet
, vol.2
, pp. 402-408
-
-
Catalucci, D.1
Gallo, P.2
Condorelli, G.3
-
12
-
-
79959845414
-
MicroRNAs 103 and 107 regulate insulin sensitivity
-
Trajkovski M, Hausser J, Soutschek J et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474: 649–53. http://dx.doi. org/10.1038/nature10112
-
(2011)
Nature
, vol.474
, pp. 649-653
-
-
Trajkovski, M.1
Hausser, J.2
Soutschek, J.3
-
13
-
-
84855350458
-
Inhibition of miR-15 protects against cardiac ischemic injury
-
Hullinger TG, Montgomery RL, Seto AG et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 2012; 110: 71–81. http://dx.doi.org/10.1161/CIRCRESAHA.111.244442
-
(2012)
Circ Res
, vol.110
, pp. 71-81
-
-
Hullinger, T.G.1
Montgomery, R.L.2
Seto, A.G.3
-
14
-
-
84864300017
-
microRNA involvement in human cancer
-
Iorio MV and Croce, CM. microRNA involvement in human cancer. Carcinogenesis 2012; 33: 1126–33. http://dx.doi.org/10.1093/carcin/ bgs140
-
(2012)
Carcinogenesis
, vol.33
, pp. 1126-1133
-
-
Iorio, M.V.1
Croce, C.M.2
-
15
-
-
84859382730
-
microRNA regulation of inflammatory responses
-
O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol 2012; 30: 295–312. http://dx.doi.org/10.1146/annurev-immunol-020711-075013
-
(2012)
Annu Rev Immunol
, vol.30
, pp. 295-312
-
-
O’connell, R.M.1
Rao, D.S.2
Baltimore, D.3
-
16
-
-
84855244103
-
MicroRNA therapeutics in cardiovascular medicine
-
Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med 2012; 4: 3–14. http://dx.doi.org/10.1002/emmm.201100191
-
(2012)
EMBO Mol Med
, vol.4
, pp. 3-14
-
-
Thum, T.1
-
17
-
-
84907276126
-
Identification of the pathologic role of miR-21 in Alport’s kidney disease
-
Boulanger JH, Song W, Zhang J et al. Identification of the pathologic role of miR-21 in Alport’s kidney disease. J Am Soc Nephrol 2013; 24: 525A.
-
(2013)
J Am Soc Nephrol
, vol.24
, pp. 525A
-
-
Boulanger, J.H.1
Song, W.2
Zhang, J.3
-
18
-
-
85067764062
-
Anti-microRNA-21 protects collagen 4A3 deficient mice from the progression of Alport disease by decreasing oxidative stress
-
Gomez IG, MacKenna DA, Roach AM et al. Anti-microRNA-21 protects collagen 4A3 deficient mice from the progression of Alport disease by decreasing oxidative stress. J Am Soc Nephrol 2013; 24: 93A.
-
(2013)
J Am Soc Nephrol
, vol.93A
, pp. 24
-
-
Gomez, I.G.1
Mackenna, D.A.2
Roach, A.M.3
-
19
-
-
84877258007
-
Treatment of HCV infection by targeting microRNA
-
Janssen HL, Kauppinen S, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368: 1685–94. http:// dx.doi.org/10.1056/NEJMoa1209026
-
(2013)
N Engl J Med
, vol.368
, pp. 1685-1694
-
-
Janssen, H.L.1
Kauppinen, S.2
Hodges, M.R.3
-
20
-
-
85042901070
-
A component of the miR-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis
-
Olive V, Sabio E, Benner MJ et al. A component of the miR-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis. eLIFE 2013; 2: e00822. http://dx.doi.org/10.7554/eLife.00822
-
(2013)
eLIFE
, vol.2
-
-
Olive, V.1
Sabio, E.2
Benner, M.J.3
-
21
-
-
84905454459
-
Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension
-
Bertero T, Lu Y, Annis S et al. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Invest 2014; pii: 74773. http:dx.doi.org/10.1172/JCI74773
-
(2014)
J Clin Invest
, pp. 74773
-
-
Bertero, T.1
Lu, Y.2
Annis, S.3
-
22
-
-
84907273002
-
RG-101, a GalNAc-conjugated anti-miR employing a unique mechanism of action by targeting host factor microRNA-122 (miR-122), demonstrates potent activity and reduction of HCV in preclinical studies
-
Bhat B, Neben S, Tay J et al. RG-101, a GalNAc-conjugated anti-miR employing a unique mechanism of action by targeting host factor microRNA-122 (miR-122), demonstrates potent activity and reduction of HCV in preclinical studies. Hepatology 2013; 58: 1393A. http://dx.doi.org/10.1002/hep.26913
-
(2013)
Hepatology
, vol.58
, pp. 1393A
-
-
Bhat, B.1
Neben, S.2
Tay, J.3
-
23
-
-
84892615509
-
C-Myc-miRNA circuitry: A central regulator of aggressive B-cell malignancies
-
Tao J, Zhao X, Tao J. C-Myc-miRNA circuitry: A central regulator of aggressive B-cell malignancies. Cell Cycle 2014; 13: 191–8. http:// dx.doi.org/10.4161/cc.27646
-
(2014)
Cell Cycle
, vol.13
, pp. 191-198
-
-
Tao, J.1
Zhao, X.2
Tao, J.3
-
24
-
-
84899482237
-
Inhibition of miR-25 improves cardiac contractility in the failing heart
-
Wahlquist C, Jeong D, Rojas-Muñoz A et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 2014; 508: 531–5. http://dx.doi.org/10.1038/nature13073
-
(2014)
Nature
, vol.508
, pp. 531-535
-
-
Wahlquist, C.1
Jeong, D.2
Rojas-Muñoz, A.3
-
25
-
-
84863116324
-
MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways
-
Chau BN, Xin C, Hartner J et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 2012; 4: 121. http://dx.doi.org/10.1126/scitranslmed.3003205
-
(2012)
Sci Transl Med
, vol.4
, pp. 121
-
-
Chau, B.N.1
Xin, C.2
Hartner, J.3
-
26
-
-
84862908985
-
Targeting B lymphoma with nanoparticles bearing glycan ligands of CD 22
-
Chen WC, Sigal DS, Saven A et al. Targeting B lymphoma with nanoparticles bearing glycan ligands of CD 22. Leuk Lymphoma 2012; 53: 208–10. http://dx.doi.org/10.3109/10428194.2011.604755
-
(2012)
Leuk Lymphoma
, vol.53
, pp. 208-210
-
-
Chen, W.C.1
Sigal, D.S.2
Saven, A.3
-
27
-
-
77953315225
-
Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122
-
Jangra RK, Yi M, Lemon SM. Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J Virol 2010; 84: 6615–25. http://dx.doi.org/10.1128/JVI.00417-10
-
(2010)
J Virol
, vol.84
, pp. 6615-6625
-
-
Jangra, R.K.1
Yi, M.2
Lemon, S.M.3
-
28
-
-
79952164510
-
Targeting microRNA-122 to treat hepatitis C virus infection
-
Jopling CL. Targeting microRNA-122 to treat hepatitis C virus infection. Viruses 2010; 2: 1382–93. http://dx.doi.org/10.3390/v2071382
-
(2010)
Viruses
, vol.2
, pp. 1382-1393
-
-
Jopling, C.L.1
-
29
-
-
79952768199
-
Masking the 5’ terminal nucleotides of the hepatitits virus genome by an unconventional microRNAtarget RNA complex
-
Machlin ES, Sarnow P, Sagan SM. Masking the 5’ terminal nucleotides of the hepatitits virus genome by an unconventional microRNAtarget RNA complex. Proc Natl Acad Sci USA 2011; 108: 3193–8. http://dx.doi.org/10.1073/pnas.1012464108
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 3193-3198
-
-
Machlin, E.S.1
Sarnow, P.2
Sagan, S.M.3
-
30
-
-
79551704610
-
Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation
-
Wilson JA, Zhang C, Huys A et al. Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation. J Virol 2011; 85: 2342–50. http:// dx.doi.org/10.1128/JVI.02046-10
-
(2011)
J Virol
, vol.85
, pp. 2342-2350
-
-
Wilson, J.A.1
Zhang, C.2
Huys, A.3
-
31
-
-
79953201904
-
MicroRNA-122 antagonism against hepatitis C virus genotypes 1-6 and reduced efficacy by host RNA insertion or mutations in the HCV 5’ UTR
-
Li YP, Gottwein JM, Scheel TK et al. MicroRNA-122 antagonism against hepatitis C virus genotypes 1-6 and reduced efficacy by host RNA insertion or mutations in the HCV 5’ UTR. Proc Natl Acad Sci USA 2011; 108: 4991–6. http://dx.doi.org/10.1073/ pnas.1016606108
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 4991-4996
-
-
Li, Y.P.1
Gottwein, J.M.2
Scheel, T.K.3
-
32
-
-
74249112787
-
Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection
-
Lanford RE, Hildebrandt-Eriksen ES, Petri A et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327: 198-201. http://dx.doi. org/10.1126/science.1178178
-
(2010)
Science
, vol.327
, pp. 198-201
-
-
Lanford, R.E.1
Hildebrandt-Eriksen, E.S.2
Petri, A.3
-
33
-
-
84862310323
-
A locked nucleic acid oligonucleotide targeting microRNA 122 is well tolerated in cynomolgus monkeys
-
Hildebrandt-Eriksen ES, Aarup V, Persson R et al. A locked nucleic acid oligonucleotide targeting microRNA 122 is well tolerated in cynomolgus monkeys. Nucleic Acid Ther 2012; 22: 152–61. http:// dx.doi.org/10.1089/nat.2011.0332
-
(2012)
Nucleic Acid Ther
, vol.22
, pp. 152-161
-
-
Hildebrandt-Eriksen, E.S.1
Aarup, V.2
Persson, R.3
-
34
-
-
84863983649
-
Glomerular pathology in Alport syndrome: A molecular perspective
-
Cosgrove D. Glomerular pathology in Alport syndrome: a molecular perspective. Pediatr Nephrol 2012; 27: 885–90. http:// dx.doi.org/10.1007/s00467-011-1868-z
-
(2012)
Pediatr Nephrol
, vol.27
, pp. 885-890
-
-
Cosgrove, D.1
-
35
-
-
84901917987
-
A mouse Col4a4 mutation causing Alport glomerulosclerosis with abnormal α3α4α5(IV) trimers
-
Korstanje R, Caputo CR, Doty RA et al. A mouse Col4a4 mutation causing Alport glomerulosclerosis with abnormal α3α4α5(IV) trimers. Kidney Int 2014; 85: 1461–8. http://dx.doi.org/10.1038/ ki.2013.493
-
(2014)
Kidney Int
, vol.85
, pp. 1461-1468
-
-
Korstanje, R.1
Caputo, C.R.2
Doty, R.A.3
-
36
-
-
84864811592
-
Renal uptake and tolerability of a 2’-o-methoxyethyl modified antisense oligonucleotide (ISIS 113715) in monkey
-
Henry SP, Johnson M, Zanardi TA et al. Renal uptake and tolerability of a 2’-o-methoxyethyl modified antisense oligonucleotide (ISIS 113715) in monkey. Toxicology 2012; 301: 13-20. http://dx.doi. org/10.1016/j.tox.2012.06.005
-
(2012)
Toxicology
, vol.301
, pp. 13-20
-
-
Henry, S.P.1
Johnson, M.2
Zanardi, T.A.3
-
37
-
-
84903639158
-
Species-specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second-generation antisense oligonucleotide
-
Frazier KS, Sobry C, Derr V et al. Species-specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second-generation antisense oligonucleotide. Toxicol Pathol 2013; 42: 923–35.
-
(2013)
Toxicol Pathol
, vol.42
, pp. 923-935
-
-
Frazier, K.S.1
Sobry, C.2
Derr, V.3
-
38
-
-
77954243341
-
Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand based mechanisms
-
Akinc A, Querbes W, De S et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand based mechanisms. Mol Ther 2010; 18: 1357–64. http://dx.doi.org/10.1038/ mt.2010.85
-
(2010)
Mol Ther
, vol.18
, pp. 1357-1364
-
-
Akinc, A.1
Querbes, W.2
De, S.3
-
39
-
-
84905584822
-
Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10 fold in mice
-
Prakash TP, Graham MJ, Yu J et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10 fold in mice. Nucleic Acids Res 2014. http://dx.doi.org/10.1093/nar/gku531
-
(2014)
Nucleic Acids Res
-
-
Prakash, T.P.1
Graham, M.J.2
Yu, J.3
-
40
-
-
78649351683
-
Liposomes modified by carbohydrate ligands can target B-cells for the treatment of B-cell lymphomas
-
Boons GJ. Liposomes modified by carbohydrate ligands can target B-cells for the treatment of B-cell lymphomas. Expert Rev Vaccines 2010; 9: 1251–6. http://dx.doi.org/10.1586/erv.10.121
-
(2010)
Expert Rev Vaccines
, vol.9
, pp. 1251-1256
-
-
Boons, G.J.1
-
41
-
-
84896519424
-
Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates
-
Dong Y, Love KT, Dorkin JR et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci USA 2014; 111: 3955–60. http://dx.doi. org/10.1073/pnas.1322937111
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 3955-3960
-
-
Dong, Y.1
Love, K.T.2
Dorkin, J.R.3
-
42
-
-
84903643579
-
Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity
-
Whitehead KA, Dorkin JR, Vegas AJ et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun 2014; 5: 4277. http://dx.doi.org/10.1038/ncomms5277
-
(2014)
Nat Commun
, vol.5
, pp. 4277
-
-
Whitehead, K.A.1
Dorkin, J.R.2
Vegas, A.J.3
-
43
-
-
84898460995
-
Design of nanodrugs for miRNA targeting in tumor cells
-
Yoo B, Ghosh, SK, Kumar M et al. Design of nanodrugs for miRNA targeting in tumor cells. J Biomed Nanotechnol 2014; 10: 1114–22.
-
(2014)
J Biomed Nanotechnol
, vol.10
, pp. 1114-1122
-
-
Yoo, B.1
Ghosh, S.K.2
Kumar, M.3
|