메뉴 건너뛰기




Volumn 80, Issue 19, 2014, Pages 5955-5964

Polyamine transporters and polyamines increase furfural tolerance during xylose fermentation with ethanologenic Escherichia coli strain LY180

Author keywords

[No Author keywords available]

Indexed keywords

AMINES; BIOASSAY; CLONING; ESCHERICHIA COLI; FERMENTATION; FURFURAL; GENES; MINERAL INDUSTRY; NUCLEIC ACIDS; PHOSPHOLIPIDS; SALTS;

EID: 84907033507     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.01913-14     Document Type: Article
Times cited : (32)

References (50)
  • 1
    • 79959386497 scopus 로고    scopus 로고
    • Deconstruction of lignocellulosic biomass to fuels and chemicals
    • Chundawat SPS, Beckham GT, Himmel ME, Dale BE. 2011. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 2:121-145. http://dx.doi.org/10.1146/annurev-chem bioeng-061010-114205
    • (2011) Annu. Rev. Chem. Biomol. Eng , vol.2 , pp. 121-145
    • Chundawat, S.P.S.1    Beckham, G.T.2    Himmel, M.E.3    Dale, B.E.4
  • 2
    • 67649823734 scopus 로고    scopus 로고
    • Cradle-tograve' assessment of existing lignocellulose pretreatment technologies
    • Da Costa Sousa L, Chundawat SP, Balan V, Dale BE. 2009. 'Cradle-tograve' assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotechnol. 20:339-347. http://dx.doi.org/10.1016/j.copbio .2009.05.003
    • (2009) Curr. Opin. Biotechnol , vol.20 , pp. 339-347
    • Da Costa Sousa, L.1    Chundawat, S.P.2    Balan, V.3    Dale, B.E.4
  • 3
    • 84872814927 scopus 로고    scopus 로고
    • Bioconversion of lignocellulose: inhibitors and detoxification
    • Nilvebrant NO.
    • Jo¨nsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6:16. http: //dx.doi.org/10.1186/1754-6834-6-16
    • (2013) Biotechnol. Biofuels , vol.6 , Issue.16
    • Jo¨nsson, L.J.1    Alriksson, B.2
  • 4
    • 70449413186 scopus 로고    scopus 로고
    • Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli
    • Mills TY, Sandoval NR, Gill RT. 2009. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol. Biofuels 2:26. http: //dx.doi.org/10.1186/1754-6834-2-26
    • (2009) Biotechnol. Biofuels , vol.2 , Issue.26
    • Mills, T.Y.1    Sandoval, N.R.2    Gill, R.T.3
  • 7
    • 77952242159 scopus 로고    scopus 로고
    • Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180
    • Miller EN, Turner PC, Jarboe LR, Ingram LO. 2010. Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol. Lett. 32:661-667. http://dx.doi.org/10 .1007/s10529-010-0209-9
    • (2010) Biotechnol. Lett , vol.32 , pp. 661-667
    • Miller, E.N.1    Turner, P.C.2    Jarboe, L.R.3    Ingram, L.O.4
  • 8
    • 0034609595 scopus 로고    scopus 로고
    • Effects of Ca(OH)2 treatments ("overliming") on the composition and toxicity of bagasse hemicellulose hydrolysates
    • Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO. 2000. Effects of Ca(OH)2 treatments ("overliming") on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol. Bioeng. 69: 526 -536. http://dx.doi.org/10.1002/1097-0290(20000905)69:5526::AI D-BIT7 3.0.CO;2-E
    • (2000) Biotechnol. Bioeng , vol.69 , pp. 526 -536
    • Martinez, A.1    Rodriguez, M.E.2    York, S.W.3    Preston, J.F.4    Ingram, L.O.5
  • 10
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genesZWF1,GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    • Gorsich SW, Dien BS, Nichols NN, Slinger PJ, Liu ZL, Skory CD. 2006. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genesZWF1,GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 71:339-349. http://dx.doi.org/10.1007 /s00253-005-0142-3
    • (2006) Appl. Microbiol. Biotechnol , vol.71 , pp. 339-349
    • Gorsich, S.W.1    Dien, B.S.2    Nichols, N.N.3    Slinger, P.J.4    Liu, Z.L.5    Skory, C.D.6
  • 11
    • 57249097175 scopus 로고    scopus 로고
    • Multiple gene-mediated NAD(P)H-dependent reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
    • Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S. 2008. Multiple gene-mediated NAD(P)H-dependent reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81:743-753. http://dx.doi.org/10 .1007/s00253-008-1702-0
    • (2008) Appl. Microbiol. Biotechnol , vol.81 , pp. 743-753
    • Liu, Z.L.1    Moon, J.2    Andersh, B.J.3    Slininger, P.J.4    Weber, S.5
  • 12
    • 68149163548 scopus 로고    scopus 로고
    • A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion
    • Liu ZL, Moon J. 2009. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446:1-10. http://dx.doi.org/10.1016/j.gene.2009.06.018
    • (2009) Gene , vol.446 , Issue.1-10
    • Liu, Z.L.1    Moon, J.2
  • 13
    • 84874607522 scopus 로고    scopus 로고
    • Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals
    • U. S. A.
    • Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmugam KT, Ingram LO. 2013. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc. Natl. Acad. Sci. U. S. A. 110:4021-4026. http: //dx.doi.org/10.1073/pnas.1217958110
    • (2013) Proc. Natl. Acad. Sci , vol.110 , pp. 4021-4026
    • Wang, X.1    Yomano, L.P.2    Lee, J.Y.3    York, S.W.4    Zheng, H.5    Mullinnix, M.T.6    Shanmugam, K.T.7    Ingram, L.O.8
  • 14
    • 84864081563 scopus 로고    scopus 로고
    • Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA
    • Zheng H, Wang X, Yomano LP, Shanmugam KT, Ingram LO. 2012. Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA. Appl. Environ. Microbiol. 78:4346-4352. http://dx.doi.org/10.1128/AEM.00356-12
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 4346-4352
    • Zheng, H.1    Wang, X.2    Yomano, L.P.3    Shanmugam, K.T.4    Ingram, L.O.5
  • 15
    • 84900329142 scopus 로고    scopus 로고
    • Genome-wide mapping of furfural tolerance genes in Escherichia coli
    • Glebes TY, Sandoval NR, Reeder PJ, Schilling KD, Zhang M, Gill RT. 2014. Genome-wide mapping of furfural tolerance genes in Escherichia coli. PLoS One 9:e87540. http://dx.doi.org/10.1371/journal.pone.0087540
    • (2014) PLoS One , vol.9 , pp. e87540
    • Glebes, T.Y.1    Sandoval, N.R.2    Reeder, P.J.3    Schilling, K.D.4    Zhang, M.5    Gill, R.T.6
  • 17
    • 84880978562 scopus 로고    scopus 로고
    • Roles of Yap1 transcription factor and antioxidants in yeast tolerance to furfural and 5-hydroxymethylfurfural that function as thiol-reactive electrophiles generating oxidative stress
    • Kim D, Hahn JS. 2013. Roles of Yap1 transcription factor and antioxidants in yeast tolerance to furfural and 5-hydroxymethylfurfural that function as thiol-reactive electrophiles generating oxidative stress. Appl. Environ. Microbiol. 79:5069 -5077. http://dx.doi.org/10.1128 /AEM.00643-13
    • (2013) Appl. Environ. Microbiol , vol.79 , pp. 5069 -5077
    • Kim, D.1    Hahn, J.S.2
  • 18
    • 41549139616 scopus 로고    scopus 로고
    • Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae
    • Laadan B, Almeida JR, Radstro¨m P, Hahn-Ha¨gerdal B, Gorwa-Grauslund M. 2008. Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast 25:191-198. http://dx.doi.org/10.1002/yea.1578
    • (2008) Yeast , vol.25 , pp. 191-198
    • Laadan, B.1    Almeida, J.R.2    Radstro¨m, P.3    Hahn-Ha¨gerdal, B.4    Gorwa-Grauslund, M.5
  • 19
    • 67649624927 scopus 로고    scopus 로고
    • Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli
    • Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO. 2009. Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl. Environ. Microbiol. 75:4315-4323. http://dx.doi.org/10.1128/AEM.00567-09
    • (2009) Appl. Environ. Microbiol , vol.75 , pp. 4315-4323
    • Miller, E.N.1    Jarboe, L.R.2    Yomano, L.P.3    York, S.W.4    Shanmugam, K.T.5    Ingram, L.O.6
  • 20
    • 79961034816 scopus 로고    scopus 로고
    • Increased furfural tolerance due to overexpression of NADHdependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate
    • Wang X, Miller EN, Yomano LP, Zhang X, Shanmugam KT, Ingram LO. 2011. Increased furfural tolerance due to overexpression of NADHdependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl. Microbiol. Biotechnol. 77: 5132-5140
    • (2011) Appl. Microbiol. Biotechnol , vol.77 , pp. 5132-5140
    • Wang, X.1    Miller, E.N.2    Yomano, L.P.3    Zhang, X.4    Shanmugam, K.T.5    Ingram, L.O.6
  • 21
    • 84868351277 scopus 로고    scopus 로고
    • Toward a semisynthetic stress response to engineer microbial solvent tolerance
    • Zingaro KA, Papoutsakis ET. 2012. Toward a semisynthetic stress response to engineer microbial solvent tolerance. mBio 3(5):e00308-12. http://dx.doi.org/10.1128/mBio.00308-12
    • (2012) mBio , vol.3 , Issue.5 , pp. e00308-e00312
    • Zingaro, K.A.1    Papoutsakis, E.T.2
  • 22
    • 84872382030 scopus 로고    scopus 로고
    • GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns
    • Zingaro KA, Papoutsakis ET. 2013. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab. Eng. 15:196-205. http://dx.doi.org/10.1016/j.ymben.2012.07.009
    • (2013) Metab. Eng , vol.15 , pp. 196-205
    • Zingaro, K.A.1    Papoutsakis, E.T.2
  • 23
    • 84873736520 scopus 로고    scopus 로고
    • Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering towards white biotechnology
    • Chandel AK, Silva SS, Singh OV. 2013. Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering towards white biotechnology. Bioenerg. Res. 6:388-401. http://dx.doi.org/10.1007/s12155 -012-9241-z
    • (2013) Bioenerg. Res. , vol.6 , pp. 388-401
    • Chandel, A.K.1    Silva, S.S.2    Singh, O.V.3
  • 24
    • 0024546351 scopus 로고
    • Specificity of the interaction of furfural with DNA
    • Hadi SM, Shahabuddin RA. 1989. Specificity of the interaction of furfural with DNA. Mutat. Res. 225:101-106. http://dx.doi.org/10.1016/0165 -7992(89)90125-5
    • (1989) Mutat. Res , vol.225 , pp. 101-106
    • Hadi, S.M.1    Shahabuddin, R.A.2
  • 26
    • 0036566476 scopus 로고    scopus 로고
    • Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase
    • Modig T, Liden G, Taherzadeh MJ. 2002. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 363:769 -776. http://dx.doi.org/10.1042 /0264-6021:3630769
    • (2002) Biochem. J. , vol.363 , pp. 769 -776
    • Modig, T.1    Liden, G.2    Taherzadeh, M.J.3
  • 27
    • 32944472627 scopus 로고    scopus 로고
    • Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines
    • Igarashi K, Kashiwagi K. 2006. Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J. Biochem. 139:11-16. http://dx.doi.org/10.1093/jb/mvj020
    • (2006) J. Biochem , vol.139 , pp. 11-16
    • Igarashi, K.1    Kashiwagi, K.2
  • 28
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • U. S. A.
    • Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A. 97:6640-6645. http://dx.doi.org/10.1073/pnas.120163297
    • (2000) Proc. Natl. Acad. Sci. , vol.97 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 29
    • 0029065955 scopus 로고
    • Gene disruption in Escherichia coli: TcR andKmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant
    • Cherepanov PP, Wackernagel W. 1995. Gene disruption in Escherichia coli: TcR andKmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9-14. http://dx.doi.org/10 .1016/0378-1119(95)00193-A.
    • (1995) Gene , vol.158 , pp. 9-14
    • Cherepanov, P.P.1    Wackernagel, W.2
  • 30
    • 79952837419 scopus 로고    scopus 로고
    • YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance
    • 431-439
    • Turner PC, Miller EN, Jarboe LR, Baggett CL, Shanmugam KT, Ingram LO. 2011. YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. J. Ind. Microbiol. Biotechnol. 38:431-439. http://dx.doi.org/10.1007/s10295-010 -0787-5
    • (2011) J. Ind. Microbiol. Biotechnol , vol.38
    • Turner, P.C.1    Miller, E.N.2    Jarboe, L.R.3    Baggett, C.L.4    Shanmugam, K.T.5    Ingram, L.O.6
  • 31
    • 33847302098 scopus 로고    scopus 로고
    • Low salt medium for lactate and ethanol production by recombinant Escherichia coli B
    • Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO. 2007. Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol. Lett. 29:397-404. http://dx .doi.org/10.1007/s10529-006-9252-y
    • (2007) Biotechnol. Lett , vol.29 , pp. 397-404
    • Martinez, A.1    Grabar, T.B.2    Shanmugam, K.T.3    Yomano, L.P.4    York, S.W.5    Ingram, L.O.6
  • 32
    • 0034233432 scopus 로고    scopus 로고
    • Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass
    • Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO. 2000. Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol. Prog. 16:637-641. http://dx.doi.org/10.1021 /bp0000508
    • (2000) Biotechnol. Prog , vol.16 , pp. 637-641
    • Martinez, A.1    Rodriguez, M.E.2    York, S.W.3    Preston, J.F.4    Ingram, L.O.5
  • 33
    • 79959256632 scopus 로고    scopus 로고
    • Biotechnological production of polyamines by bacteria: recent achievements and future perspectives
    • Schneider J, Wendisch VF. 2011. Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl. Microbiol. Biotechnol. 91:17-30. http://dx.doi.org/10.1007/s00253-011 -3252-0
    • (2011) Appl. Microbiol. Biotechnol , vol.91 , pp. 17-30
    • Schneider, J.1    Wendisch, V.F.2
  • 34
    • 22144455041 scopus 로고    scopus 로고
    • Enhanced trehalose production improves growth of Escherichia coli under osmotic stress
    • Purvis JE, Yomano LP, Ingram LO. 2005. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl. Environ. Microbiol. 71:3761-3769. http://dx.doi.org/10.1128/AEM.71.7.3761 -3769.2005
    • (2005) Appl. Environ. Microbiol , vol.71 , pp. 3761-3769
    • Purvis, J.E.1    Yomano, L.P.2    Ingram, L.O.3
  • 35
    • 84863467493 scopus 로고    scopus 로고
    • Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilis pdc and adhB genes
    • Turner PC, Yomano LP, Jarboe LR, York SW, Baggett CL, Moritz BE, Zentz EB, Shanmugam KT, Ingram LO. 2012. Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilis pdc and adhB genes. J. Ind. Microbiol. Biotechnol. 39:629-639. http://dx.doi.org/10.1007/s10295-011-1052-2
    • (2012) J. Ind. Microbiol. Biotechnol , vol.39 , pp. 629-639
    • Turner, P.C.1    Yomano, L.P.2    Jarboe, L.R.3    York, S.W.4    Baggett, C.L.5    Moritz, B.E.6    Zentz, E.B.7    Shanmugam, K.T.8    Ingram, L.O.9
  • 36
    • 67651204792 scopus 로고    scopus 로고
    • Bacterial gene amplification: implications for the evolution of antibiotic resistance
    • Sandegren L, Andersson DI. 2009. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7:578-588. http://dx.doi.org/10.1038/nrmicro2174
    • (2009) Nat. Rev. Microbiol , vol.7 , pp. 578-588
    • Sandegren, L.1    Andersson, D.I.2
  • 37
    • 47249122499 scopus 로고    scopus 로고
    • Polyamines: essential factors for growth and survival
    • Kusano T, Berberich T, Tateda C, Takahashi Y. 2008. Polyamines: essential factors for growth and survival. Planta 228:367-381. http://dx .doi.org/10.1007/s00425-008-0772-7
    • (2008) Planta , vol.228 , pp. 367-381
    • Kusano, T.1    Berberich, T.2    Tateda, C.3    Takahashi, Y.4
  • 38
    • 79954648688 scopus 로고    scopus 로고
    • Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates
    • Liu ZL. 2011. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl. Microbiol. Biotechnol. 90: 809-825. http://dx.doi.org/10.1007/s00253-011-3167-9
    • (2011) Appl. Microbiol. Biotechnol , vol.90 , pp. 809-825
    • Liu, Z.L.1
  • 39
    • 0034608443 scopus 로고    scopus 로고
    • Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli
    • Zaldivar J, Martinez A, Ingram LO. 2000. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 68:524-530. http://dx .doi.org/10.1002/(SICI)1097-0290(20000605)68:5524::AID-BIT6 3 .0.CO;2-T
    • (2000) Biotechnol. Bioeng , vol.68 , pp. 524-530
    • Zaldivar, J.1    Martinez, A.2    Ingram, L.O.3
  • 40
    • 0033527357 scopus 로고    scopus 로고
    • Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli
    • Zaldivar J, Martinez A, Ingram LO. 1999. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65:24-33. http://dx.doi.org/10.1002/(SICI)1097-0290(19991 005)65:124::AID-BIT4 3.0.CO;2-2
    • (1999) Biotechnol. Bioeng , vol.65 , pp. 24-33
    • Zaldivar, J.1    Martinez, A.2    Ingram, L.O.3
  • 41
    • 0034923283 scopus 로고    scopus 로고
    • The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli
    • Tkachenko A, Nesterova L, Pshenichnov M. 2001. The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch. Microbiol. 176:155-157. http://dx.doi.org/10.1007/s002030100301
    • (2001) Arch. Microbiol , vol.176 , pp. 155-157
    • Tkachenko, A.1    Nesterova, L.2    Pshenichnov, M.3
  • 42
    • 84858004545 scopus 로고    scopus 로고
    • Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics
    • Tkachenko AG, Akhova AV, Shumkov MS, Nesterova LY. 2012. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Res. Microbiol. 163:83-91. http://dx.doi.org/10.1016/j .resmic.2011.10.009
    • (2012) Res. Microbiol , vol.163 , pp. 83-91
    • Tkachenko, A.G.1    Akhova, A.V.2    Shumkov, M.S.3    Nesterova, L.Y.4
  • 43
    • 84861155394 scopus 로고    scopus 로고
    • Increased furan tolerance in Escherichia coli due to a cryptic ucpA gene
    • Wang X, Miller EN, Yomano LP, Shanmugam KT, Ingram LO. 2012. Increased furan tolerance in Escherichia coli due to a cryptic ucpA gene. Appl. Environ. Microbiol. 78:2452-2455. http://dx.doi.org/10.1128/AEM .07783-11
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 2452-2455
    • Wang, X.1    Miller, E.N.2    Yomano, L.P.3    Shanmugam, K.T.4    Ingram, L.O.5
  • 44
    • 84934444414 scopus 로고    scopus 로고
    • Polyamines in bacteria: pleiotropic effects yet specific mechanisms
    • Wortham BW, Patel CN, Oliveira MA. 2007. Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv. Exp. Med. Biol. 603:106-115http://dx.doi.org/10.1007/978-0-387-72124-8_9
    • (2007) Adv. Exp. Med. Biol , vol.603 , pp. 106-115
    • Wortham, B.W.1    Patel, C.N.2    Oliveira, M.A.3
  • 46
    • 0017724061 scopus 로고
    • Polyamine levels in Escherichia coli during nutritional shiftup and exponential growth
    • Boyle SM, MacIntyre MF, Sells BH. 1977. Polyamine levels in Escherichia coli during nutritional shiftup and exponential growth. Biochim. Biophys. Acta 477:221-227. http://dx.doi.org/10.1016/0005-2787(77)90047-8
    • (1977) Biochim. Biophys. Acta , vol.477 , pp. 221-227
    • Boyle, S.M.1    MacIntyre, M.F.2    Sells, B.H.3
  • 47
    • 0037079669 scopus 로고    scopus 로고
    • Polyamine-nucleic acid interactions and the effects on structure in oriented DNA fibers
    • Van Dam L, Korolev N, Nordenskiod L. 2002. Polyamine-nucleic acid interactions and the effects on structure in oriented DNA fibers. Nucleic Acids Res. 30:419-428
    • (2002) Nucleic Acids Res , vol.30 , pp. 419-428
    • Van Dam, L.1    Korolev, N.2    Nordenskiod, L.3
  • 48
    • 0034685624 scopus 로고    scopus 로고
    • Polyamines: mysterious modulators of cellular functions
    • Igarashi K, Kashiwagi K. 2000. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271:559-564. http: //dx.doi.org/10.1006/bbrc.2000.2601
    • (2000) Biochem. Biophys. Res. Commun , vol.271 , pp. 559-564
    • Igarashi, K.1    Kashiwagi, K.2
  • 49
    • 0029155041 scopus 로고
    • Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli
    • Fukuchi J, Kashiwagi K, Yamagishi M, Ishihama A, Igarashi K. 1995. Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli. J. Biol. Chem. 270:18831-18835http://dx.doi.org/10.1074/jbc.270.32.18831
    • (1995) J. Biol. Chem , vol.270 , pp. 18831-18835
    • Fukuchi, J.1    Kashiwagi, K.2    Yamagishi, M.3    Ishihama, A.4    Igarashi, K.5
  • 50
    • 0033806020 scopus 로고    scopus 로고
    • Spermidine acetyltransferase is required to prevent spermidine toxicity at low temperatures in Escherichia coli
    • Limsuwun K, Jones PG. 2000. Spermidine acetyltransferase is required to prevent spermidine toxicity at low temperatures in Escherichia coli. J. Bacteriol. 182:5373-5380. http://dx.doi.org/10.1128/JB.182 .19.5373-5380.2000
    • (2000) J. Bacteriol , vol.182 , pp. 5373-5380
    • Limsuwun, K.1    Jones, P.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.