메뉴 건너뛰기




Volumn 23, Issue 3, 2014, Pages 433-465

Latent Markov models: A review of a general framework for the analysis of longitudinal data with covariates

Author keywords

Bayesian framework; EM algorithm; Forward Backward recursions; Hidden Markov models; Measurement errors; Panel data; Unobserved heterogeneity

Indexed keywords


EID: 84906821317     PISSN: 11330686     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11749-014-0381-7     Document Type: Article
Times cited : (64)

References (103)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • In: Petrov BN, Csaki F (eds). Akademiai Kiado, Budapest
    • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267-281.
    • (1973) Second international symposium on information theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 33947231297 scopus 로고    scopus 로고
    • Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting
    • Altman RM (2007) Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting. J Am Stat Assoc 102: 201-210.
    • (2007) J Am Stat Assoc , vol.102 , pp. 201-210
    • Altman, R.M.1
  • 3
    • 84906807125 scopus 로고
    • Probability models for analysing time changes in attitudes
    • In: Paul FL (ed), The RAND Research Memorandum No. 455
    • Anderson TW (1951) Probability models for analysing time changes in attitudes. In: Paul FL (ed) The use of mathematical models in the measurement of the attitudes, The RAND Research Memorandum No. 455.
    • (1951) The use of mathematical models in the measurement of the attitudes
    • Anderson, T.W.1
  • 4
    • 0039568831 scopus 로고
    • Probability models for analysing time changes in attitudes
    • In: Paul FL (ed). The Free press, IL
    • Anderson TW (1954) Probability models for analysing time changes in attitudes. In: Paul FL (ed) Mathematical thinking in the social science. The Free press, IL.
    • (1954) Mathematical thinking in the social science
    • Anderson, T.W.1
  • 5
    • 73949139622 scopus 로고    scopus 로고
    • Subspace estimation and prediction methods for hidden Markov models
    • Andersson S, Rydén T (2009) Subspace estimation and prediction methods for hidden Markov models. Ann Stat 37: 4131-4152.
    • (2009) Ann Stat , vol.37 , pp. 4131-4152
    • Andersson, S.1    Rydén, T.2
  • 7
    • 84901644195 scopus 로고    scopus 로고
    • A comparison of some criteria for states selection in the latent Markov model for longitudinal data
    • Bacci S, Pandolfi S, Pennoni F (2014) A comparison of some criteria for states selection in the latent Markov model for longitudinal data. Adv Data Anal Classif 8: 125-145.
    • (2014) Adv Data Anal Classif , vol.8 , pp. 125-145
    • Bacci, S.1    Pandolfi, S.2    Pennoni, F.3
  • 8
    • 33644753140 scopus 로고    scopus 로고
    • Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities
    • Bartolucci F (2006) Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities. J R Stat Soc Ser B 68: 155-178.
    • (2006) J R Stat Soc Ser B , vol.68 , pp. 155-178
    • Bartolucci, F.1
  • 9
    • 66549107991 scopus 로고    scopus 로고
    • A multivariate extension of the dynamic logit model for longitudinal data based on a latent Markov heterogeneity structure
    • Bartolucci F, Farcomeni A (2009) A multivariate extension of the dynamic logit model for longitudinal data based on a latent Markov heterogeneity structure. J Am Stat Assoc 104: 816-831.
    • (2009) J Am Stat Assoc , vol.104 , pp. 816-831
    • Bartolucci, F.1    Farcomeni, A.2
  • 10
    • 77949290489 scopus 로고    scopus 로고
    • A note on the mixture transition distribution and hidden Markov models
    • Bartolucci F, Farcomeni A (2010) A note on the mixture transition distribution and hidden Markov models. J Time Ser Anal 31: 132-138.
    • (2010) J Time Ser Anal , vol.31 , pp. 132-138
    • Bartolucci, F.1    Farcomeni, A.2
  • 11
    • 84893108296 scopus 로고    scopus 로고
    • A new constant memory recursion for hidden Markov models
    • (2014, in press)
    • Bartolucci F, Pandolfi S (2013) A new constant memory recursion for hidden Markov models. J Comput Biol (2014, in press).
    • (2013) J Comput Biol
    • Bartolucci, F.1    Pandolfi, S.2
  • 12
    • 34547679632 scopus 로고    scopus 로고
    • A class of latent Markov models for capture-recapture data allowing for time, heterogeneity and behavior effects
    • Bartolucci F, Pennoni F (2007) A class of latent Markov models for capture-recapture data allowing for time, heterogeneity and behavior effects. Biometrics 63: 568-578.
    • (2007) Biometrics , vol.63 , pp. 568-578
    • Bartolucci, F.1    Pennoni, F.2
  • 13
    • 33845755393 scopus 로고    scopus 로고
    • A latent Markov model for detecting patterns of criminal activity
    • Bartolucci F, Pennoni F, Francis B (2007) A latent Markov model for detecting patterns of criminal activity. J R Stat Soc Ser A 170: 151-132.
    • (2007) J R Stat Soc Ser A , vol.170 , pp. 132-151
    • Bartolucci, F.1    Pennoni, F.2    Francis, B.3
  • 14
    • 77958057320 scopus 로고    scopus 로고
    • Latent Markov model for binary longitudinal data: an application to the performance evaluation of nursing homes
    • Bartolucci F, Lupparelli M, Montanari GE (2009) Latent Markov model for binary longitudinal data: an application to the performance evaluation of nursing homes. Ann Appl Stat 3: 611-636.
    • (2009) Ann Appl Stat , vol.3 , pp. 611-636
    • Bartolucci, F.1    Lupparelli, M.2    Montanari, G.E.3
  • 15
    • 79960745542 scopus 로고    scopus 로고
    • Assessment of school performance through a multilevel latent Markov Rasch model
    • Bartolucci F, Pennoni F, Vittadini G (2011) Assessment of school performance through a multilevel latent Markov Rasch model. J Educ Behav Stat 36: 491-522.
    • (2011) J Educ Behav Stat , vol.36 , pp. 491-522
    • Bartolucci, F.1    Pennoni, F.2    Vittadini, G.3
  • 17
    • 0000342467 scopus 로고
    • Statistical inference for probabilistic functions of finite state Markov chains
    • Baum L, Petrie T (1966) Statistical inference for probabilistic functions of finite state Markov chains. Ann Math Stat 37: 1554-1563.
    • (1966) Ann Math Stat , vol.37 , pp. 1554-1563
    • Baum, L.1    Petrie, T.2
  • 18
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum L, Petrie T, Soules G, Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41: 164-171.
    • (1970) Ann Math Stat , vol.41 , pp. 164-171
    • Baum, L.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 19
    • 3042646471 scopus 로고    scopus 로고
    • Optimization of mixture models: Comparison of different strategies
    • Berchtold A (2004) Optimization of mixture models: Comparison of different strategies. Comput Stat 19: 385-406.
    • (2004) Comput Stat , vol.19 , pp. 385-406
    • Berchtold, A.1
  • 21
    • 0032329029 scopus 로고    scopus 로고
    • Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models
    • Bickel PJ, Ritov Y, Rydén T (1998) Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Ann Stat 26: 1614-1635.
    • (1998) Ann Stat , vol.26 , pp. 1614-1635
    • Bickel, P.J.1    Ritov, Y.2    Rydén, T.3
  • 23
    • 47149091087 scopus 로고    scopus 로고
    • Latent Markov modeling applied to grant peer review
    • Bonrmann L, Mutz R, Daniel HD (2008) Latent Markov modeling applied to grant peer review. J Informetr 2: 217-228.
    • (2008) J Informetr , vol.2 , pp. 217-228
    • Bonrmann, L.1    Mutz, R.2    Daniel, H.D.3
  • 24
    • 13844251687 scopus 로고    scopus 로고
    • An information-theoretic perspective on order estimation
    • In: O Cappé TR E Moulines (ed), Springer, Berlin
    • Boucheron S, Gassiat E (2007) An information-theoretic perspective on order estimation. In: O Cappé TR E Moulines (ed) Inference in Hidden Markov models, Springer, Berlin, pp 565-602.
    • (2007) Inference in Hidden Markov models , pp. 565-602
    • Boucheron, S.1    Gassiat, E.2
  • 25
    • 0011467982 scopus 로고
    • A latent Markov model approach to the estimation of response error in multiwave panel data
    • Bye BV, Schechter ES (1986) A latent Markov model approach to the estimation of response error in multiwave panel data. J Am Stat Assoc 81: 375-380.
    • (1986) J Am Stat Assoc , vol.81 , pp. 375-380
    • Bye, B.V.1    Schechter, E.S.2
  • 27
    • 0035647936 scopus 로고    scopus 로고
    • The consistency of estimators in finite mixture models
    • Cheng RCH, Liu WB (2001) The consistency of estimators in finite mixture models. Scand J Stat 28: 603-616.
    • (2001) Scand J Stat , vol.28 , pp. 603-616
    • Cheng, R.C.H.1    Liu, W.B.2
  • 28
    • 0003107701 scopus 로고    scopus 로고
    • Calculating posterior distributions and modal estimates in Markov mixture models
    • Chib S (1996) Calculating posterior distributions and modal estimates in Markov mixture models. J Econom 75: 79-97.
    • (1996) J Econom , vol.75 , pp. 79-97
    • Chib, S.1
  • 29
    • 0001398981 scopus 로고
    • Latent class models for stage-sequential dynamic latent variables
    • Collins LM, Wugalter SE (1992) Latent class models for stage-sequential dynamic latent variables. Multivar Behav Res 27: 131-157.
    • (1992) Multivar Behav Res , vol.27 , pp. 131-157
    • Collins, L.M.1    Wugalter, S.E.2
  • 30
    • 0043114218 scopus 로고    scopus 로고
    • Marginal regression models for the analysis of positive association of ordinal response variables
    • Colombi R, Forcina A (2001) Marginal regression models for the analysis of positive association of ordinal response variables. Biometrika 88: 1007-1019.
    • (2001) Biometrika , vol.88 , pp. 1007-1019
    • Colombi, R.1    Forcina, A.2
  • 31
    • 24944555208 scopus 로고    scopus 로고
    • Bayesian model choice based on Monte Carlo estimates of posterior model probabilities
    • Congdon P (2006) Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. Comput Stat Data Anal 50: 346-357.
    • (2006) Comput Stat Data Anal , vol.50 , pp. 346-357
    • Congdon, P.1
  • 32
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: a comparative review
    • Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91: 883-904.
    • (1996) J Am Stat Assoc , vol.91 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 33
    • 84865399744 scopus 로고    scopus 로고
    • Semiparametric hidden Markov models
    • Dannemann J (2012) Semiparametric hidden Markov models. J Comput Graphical Stat 21: 677-692.
    • (2012) J Comput Graphical Stat , vol.21 , pp. 677-692
    • Dannemann, J.1
  • 35
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc Ser B 39: 1-38.
    • (1977) J R Stat Soc Ser B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 36
    • 34548533999 scopus 로고    scopus 로고
    • Latent class modeling of website users' search patterns: Implications for online market segmentation
    • Dias JG, Vermunt JK (2007) Latent class modeling of website users' search patterns: Implications for online market segmentation. J Retailing Consum Serv 14: 359-368.
    • (2007) J Retailing Consum Serv , vol.14 , pp. 359-368
    • Dias, J.G.1    Vermunt, J.K.2
  • 38
    • 80051911306 scopus 로고    scopus 로고
    • Hidden Markov partition models
    • Farcomeni A (2011) Hidden Markov partition models. Stat Probab Lett 81: 1766-1770.
    • (2011) Stat Probab Lett , vol.81 , pp. 1766-1770
    • Farcomeni, A.1
  • 39
    • 81955167668 scopus 로고    scopus 로고
    • Quantile regression for longitudinal data based on latent Markov subject-specific parameters
    • Farcomeni A (2012) Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat Comput 22: 141-152.
    • (2012) Stat Comput , vol.22 , pp. 141-152
    • Farcomeni, A.1
  • 40
    • 84866453483 scopus 로고    scopus 로고
    • A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data
    • article 3
    • Farcomeni A, Arima S (2012) A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data. Stat Appl Genetics Mol Biol 11(4): article 3.
    • (2012) Stat Appl Genetics Mol Biol , vol.11 , Issue.4
    • Farcomeni, A.1    Arima, S.2
  • 41
    • 0000452356 scopus 로고    scopus 로고
    • Using bootstrap likelihood ratios in finite mixture models
    • Feng Z, McCulloch CE (1996) Using bootstrap likelihood ratios in finite mixture models. J R Stat Soc Ser B 58: 609-617.
    • (1996) J R Stat Soc Ser B , vol.58 , pp. 609-617
    • Feng, Z.1    McCulloch, C.E.2
  • 43
    • 1842815959 scopus 로고    scopus 로고
    • Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models
    • Frühwirth-Schnatter S (2001) Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. J Am Stat Assoc 96: 194-209.
    • (2001) J Am Stat Assoc , vol.96 , pp. 194-209
    • Frühwirth-Schnatter, S.1
  • 44
    • 84894530645 scopus 로고    scopus 로고
    • A constrained robust proposal for mixture modeling avoiding spurious solutions
    • doi: 10. 1007/s11634-013-0153-3
    • García-Escudero L, Gordaliza A, Mayo-Iscar A (2013) A constrained robust proposal for mixture modeling avoiding spurious solutions. Adv Data Anal Classif 1-17: doi: 10. 1007/s11634-013-0153-3.
    • (2013) Adv Data Anal Classif , pp. 1-17
    • García-Escudero, L.1    Gordaliza, A.2    Mayo-Iscar, A.3
  • 45
    • 0031268341 scopus 로고    scopus 로고
    • Factorial hidden Markov models
    • Ghahramani Z, Jordan MI (1997) Factorial hidden Markov models. Mach Learn 29: 245-273.
    • (1997) Mach Learn , vol.29 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.I.2
  • 47
    • 84910326325 scopus 로고
    • Statistical methods for the mover-stayer model
    • Goodman LA (1961) Statistical methods for the mover-stayer model. J Am Stat Assoc 56: 841-868.
    • (1961) J Am Stat Assoc , vol.56 , pp. 841-868
    • Goodman, L.A.1
  • 48
    • 85041975304 scopus 로고
    • Exploratory latent structure analysis using both identifiable and unidentifiable models
    • Goodman LA (1974) Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61: 215-231.
    • (1974) Biometrika , vol.61 , pp. 215-231
    • Goodman, L.A.1
  • 49
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 51
    • 0001873532 scopus 로고
    • Development and changes in pupils' interest in physics (grade 5 to 10): design of a longitudinal study
    • M. Lehrke, L. Hoffmann, and P. L. Gardner (Eds.), Kiel: IPN
    • Hoffmann L, Lehrke M, Todt E (1985) Development and changes in pupils' interest in physics (grade 5 to 10): design of a longitudinal study. In: Lehrke M, Hoffmann L, Gardner PL (eds) Interest in science and technology education. IPN, Kiel, pp 71-80.
    • (1985) Interest in Science and Technology Education , pp. 71-80
    • Hoffmann, L.1    Lehrke, M.2    Todt, E.3
  • 52
    • 0026206264 scopus 로고
    • Hidden Markov models for speech recognition
    • Juang B, Rabiner L (1991) Hidden Markov models for speech recognition. Technometrics 33: 251-272.
    • (1991) Technometrics , vol.33 , pp. 251-272
    • Juang, B.1    Rabiner, L.2
  • 53
    • 42049095667 scopus 로고    scopus 로고
    • An overview of Markov chain methods for the study of stage-sequential developmental processes
    • Kaplan D (2008) An overview of Markov chain methods for the study of stage-sequential developmental processes. Dev Psychol 44: 457-467.
    • (2008) Dev Psychol , vol.44 , pp. 457-467
    • Kaplan, D.1
  • 57
    • 0001387339 scopus 로고    scopus 로고
    • State space and hidden Markov models
    • O. E. Barndorff-Nielsen, D. R. Cox, C. Klüppelberg (Eds.), Boca Raton, FL: Chapman and Hall/CRC
    • Künsch HR (2005) State space and hidden Markov models. In: Barndorff-Nielsen OE, Cox DR, Klüppelberg C (eds) Complex stochastic systems. Chapman and Hall/CRC, Boca Raton, FL, pp 109-173.
    • (2005) Complex Stochastic Systems , pp. 109-173
    • Künsch, H.R.1
  • 58
    • 0002100563 scopus 로고
    • New development in latent class theory
    • In: Langeheine R, Rost J (eds) Plenum Press, New York
    • Langeheine R (1988) New development in latent class theory. In: Langeheine R, Rost J (eds) Latent trait and latent class models. Plenum Press, New York, pp 77-108.
    • (1988) Latent trait and latent class models , pp. 77-108
    • Langeheine, R.1
  • 61
    • 0001453756 scopus 로고
    • The logical and mathematical foundation of latent structure analysis
    • In: Stouffer SA, Guttman L, Suchman EA (ed). Princeton University Press, New York
    • Lazarsfeld PF (1950) The logical and mathematical foundation of latent structure analysis. In: Stouffer SA, Guttman L, Suchman EA (ed) Measurement and prediction. Princeton University Press, New York.
    • (1950) Measurement and prediction
    • Lazarsfeld, P.F.1
  • 63
    • 0042658900 scopus 로고
    • Bayesian estimation methods for two-way contingency tables
    • Leonard T (1975) Bayesian estimation methods for two-way contingency tables. J R Stat Soc Ser B 37: 23-37.
    • (1975) J R Stat Soc Ser B , vol.37 , pp. 23-37
    • Leonard, T.1
  • 64
    • 0026652789 scopus 로고
    • Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models
    • Leroux BG, Puterman ML (1992) Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. Biometrics 48: 545-558.
    • (1992) Biometrics , vol.48 , pp. 545-558
    • Leroux, B.G.1    Puterman, M.L.2
  • 65
    • 0020734214 scopus 로고
    • An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition
    • Levinson SE, Rabiner LR, Sondhi MM (1983) An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. Bell Syst Tech J 62: 1035-1074.
    • (1983) Bell Syst Tech J , vol.62 , pp. 1035-1074
    • Levinson, S.E.1    Rabiner, L.R.2    Sondhi, M.M.3
  • 66
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis T (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B 44: 226-233.
    • (1982) J R Stat Soc Ser B , vol.44 , pp. 226-233
    • Louis, T.1
  • 67
    • 0036750717 scopus 로고    scopus 로고
    • Exact computation of the observed information matrix for hidden Markov models
    • Lystig TC, Hughes J (2002) Exact computation of the observed information matrix for hidden Markov models. J Comput Graphical Stat 11: 678-689.
    • (2002) J Comput Graphical Stat , vol.11 , pp. 678-689
    • Lystig, T.C.1    Hughes, J.2
  • 69
    • 0035741575 scopus 로고    scopus 로고
    • Latent class factor and cluster models, bi-plots and related graphical displays
    • Magidson J, Vermunt JK (2001) Latent class factor and cluster models, bi-plots and related graphical displays. Sociol Methodol 31: 223-264.
    • (2001) Sociol Methodol , vol.31 , pp. 223-264
    • Magidson, J.1    Vermunt, J.K.2
  • 70
    • 82055200209 scopus 로고    scopus 로고
    • Mixed hidden Markov models for longitudinal data: an overview
    • Maruotti A (2011) Mixed hidden Markov models for longitudinal data: an overview. Int Stat Rev 79: 427-454.
    • (2011) Int Stat Rev , vol.79 , pp. 427-454
    • Maruotti, A.1
  • 72
    • 0001101196 scopus 로고
    • Efficient estimation and local identification in latent class analysis
    • McHugh RB (1956) Efficient estimation and local identification in latent class analysis. Psychometrika 21: 331-347.
    • (1956) Psychometrika , vol.21 , pp. 331-347
    • McHugh, R.B.1
  • 74
    • 8544268508 scopus 로고    scopus 로고
    • Latent variable analysis: growth mixture modeling and related techniques for longitudinal data
    • D. Kaplan (Ed.), Newbury Park: Sage Publications
    • Muthén B (2004) Latent variable analysis: growth mixture modeling and related techniques for longitudinal data. In: Kaplan D (ed) Handbook of quantitative methodology for the social sciences. Sage Publications, Newbury Park, pp 345-368.
    • (2004) Handbook of Quantitative Methodology for the Social Sciences , pp. 345-368
    • Muthén, B.1
  • 75
    • 0033441152 scopus 로고    scopus 로고
    • Analyzing developmental trajectories: a semi-parametric, group-based approach
    • Nagin D (1999) Analyzing developmental trajectories: a semi-parametric, group-based approach. Psychol Methods 4: 139-157.
    • (1999) Psychol Methods , vol.4 , pp. 139-157
    • Nagin, D.1
  • 76
    • 0342412512 scopus 로고
    • Bayesian log-linear estimates for three-way contingency tables
    • Nazaret W (1987) Bayesian log-linear estimates for three-way contingency tables. Biometrika 74: 401-410.
    • (1987) Biometrika , vol.74 , pp. 401-410
    • Nazaret, W.1
  • 77
    • 0033475401 scopus 로고    scopus 로고
    • Direct calculation of the information matrix via the EM algorithm
    • Oakes D (1999) Direct calculation of the information matrix via the EM algorithm. J R Stat Soc Ser B 61: 479-482.
    • (1999) J R Stat Soc Ser B , vol.61 , pp. 479-482
    • Oakes, D.1
  • 78
    • 34848886931 scopus 로고    scopus 로고
    • Discrete time, discrete state latent Markov modelling for assessing and predicting household acquisitions of financial products
    • Paas LJ, Vermunt JK, Bijlmolt THA (2009) Discrete time, discrete state latent Markov modelling for assessing and predicting household acquisitions of financial products. J R Stat Soc Ser A 170: 955-974.
    • (2009) J R Stat Soc Ser A , vol.170 , pp. 955-974
    • Paas, L.J.1    Vermunt, J.K.2    Bijlmolt, T.H.A.3
  • 79
    • 84935436985 scopus 로고
    • Mixed Markov latent class models
    • van de Pol F, Langeheine R (1990) Mixed Markov latent class models. Sociol Method 20: 213-247.
    • (1990) Sociol Method , vol.20 , pp. 213-247
    • van de Pol, F.1    Langeheine, R.2
  • 80
    • 43949124407 scopus 로고    scopus 로고
    • Latent class models for diary methods data: parameter estimation by local computations
    • Rijmen F, Vansteelandt K, De Boeck P (2007) Latent class models for diary methods data: parameter estimation by local computations. Psychometrika 73: 167-182.
    • (2007) Psychometrika , vol.73 , pp. 167-182
    • Rijmen, F.1    Vansteelandt, K.2    De Boeck, P.3
  • 81
    • 0034366269 scopus 로고    scopus 로고
    • Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method
    • Robert C, Ryden T, Titterington D (2000) Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method. J R Stat Soc Ser B 62: 57-75.
    • (2000) J R Stat Soc Ser B , vol.62 , pp. 57-75
    • Robert, C.1    Ryden, T.2    Titterington, D.3
  • 83
    • 0033236612 scopus 로고    scopus 로고
    • Convergence controls for MCMC algorithms, with applications to hidden Markov chains
    • Robert CP, RydÉn T, Titterington D (1999) Convergence controls for MCMC algorithms, with applications to hidden Markov chains. J Stat Comput Simul 64: 327-355.
    • (1999) J Stat Comput Simul , vol.64 , pp. 327-355
    • Robert, C.P.1    RydÉn, T.2    Titterington, D.3
  • 84
    • 1542742695 scopus 로고    scopus 로고
    • Modeling uncertainty in latent class membership: a case study in criminology
    • Roeder K, Lynch KG, Nagin DS (1999) Modeling uncertainty in latent class membership: a case study in criminology. J Am Stat Assoc 94: 766-776.
    • (1999) J Am Stat Assoc , vol.94 , pp. 766-776
    • Roeder, K.1    Lynch, K.G.2    Nagin, D.S.3
  • 87
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6: 461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 88
    • 0036489069 scopus 로고    scopus 로고
    • Bayesian methods for hidden Markov models: recursive computing in the 21st century
    • Scott SL (2002) Bayesian methods for hidden Markov models: recursive computing in the 21st century. J Am Stat Assoc 97: 337-351.
    • (2002) J Am Stat Assoc , vol.97 , pp. 337-351
    • Scott, S.L.1
  • 89
    • 17044412600 scopus 로고    scopus 로고
    • Types of likelihood maxima in mixture models and their implication on the performance of tests
    • Seidel W, Ševčíková H (2004) Types of likelihood maxima in mixture models and their implication on the performance of tests. Ann Inst Stat Math 56: 631-654.
    • (2004) Ann Inst Stat Math , vol.56 , pp. 631-654
    • Seidel, W.1    Ševčíková, H.2
  • 90
    • 72949104907 scopus 로고    scopus 로고
    • Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes
    • Spezia L (2010) Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes. J Time Ser Anal 31: 1-11.
    • (2010) J Time Ser Anal , vol.31 , pp. 1-11
    • Spezia, L.1
  • 92
    • 42749085986 scopus 로고    scopus 로고
    • Direct maximization of the likelihood of a hidden Markov model
    • Turner R (2008) Direct maximization of the likelihood of a hidden Markov model. Comput Stat Data Anal 52: 4147-4160.
    • (2008) Comput Stat Data Anal , vol.52 , pp. 4147-4160
    • Turner, R.1
  • 93
    • 0032400353 scopus 로고    scopus 로고
    • Hidden Markov chains in generalized linear models
    • Turner TR, Cameron MA, Thomson PJ (1998) Hidden Markov chains in generalized linear models. Can J Stat 26: 107-125.
    • (1998) Can J Stat , vol.26 , pp. 107-125
    • Turner, T.R.1    Cameron, M.A.2    Thomson, P.J.3
  • 94
    • 76649143337 scopus 로고    scopus 로고
    • Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters
    • Tuyl F, Gerlach R, Mengersen K (2009) Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters. Bayesian Anal 4: 151-158.
    • (2009) Bayesian Anal , vol.4 , pp. 151-158
    • Tuyl, F.1    Gerlach, R.2    Mengersen, K.3
  • 95
    • 34447263844 scopus 로고    scopus 로고
    • Drive for thinness, affect regulation and physical activity in eating disorders: a daily life study
    • Vansteelandt K, Rijmen F, Pieters G, Vanderlinden J (2007) Drive for thinness, affect regulation and physical activity in eating disorders: a daily life study. Behav Res Ther 45: 1717-1734.
    • (2007) Behav Res Ther , vol.45 , pp. 1717-1734
    • Vansteelandt, K.1    Rijmen, F.2    Pieters, G.3    Vanderlinden, J.4
  • 96
    • 81355125267 scopus 로고    scopus 로고
    • Longitudinal research with latent variables
    • K. Montfortvan, J. Oud, and A. Satorra (Eds.), Heidelberg: Springer
    • Vermunt J (2010) Longitudinal research with latent variables. In: van Montfort K, Oud J, Satorra A (eds) Handbook of advanced multilevel analysis. Springer, Heidelberg, pp 119-152.
    • (2010) Handbook of Advanced Multilevel Analysis , pp. 119-152
    • Vermunt, J.1
  • 97
    • 0033419512 scopus 로고    scopus 로고
    • Discrete-time discrete-state latent Markov models with time-constant and time-varying covariates
    • Vermunt JK, Langeheine R, Böckenholt U (1999) Discrete-time discrete-state latent Markov models with time-constant and time-varying covariates. J Educ Behav Stat 24: 179-207.
    • (1999) J Educ Behav Stat , vol.24 , pp. 179-207
    • Vermunt, J.K.1    Langeheine, R.2    Böckenholt, U.3
  • 98
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
    • Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inform Theory 13: 260-269.
    • (1967) IEEE Trans Inform Theory , vol.13 , pp. 260-269
    • Viterbi, A.1
  • 99
    • 45349099441 scopus 로고    scopus 로고
    • Hidden Markov models and the Baum-Welch algorithm
    • Welch LR (2003) Hidden Markov models and the Baum-Welch algorithm. IEEE Inform Theory Soc Newsl 53: 1-13.
    • (2003) IEEE Inform Theory Soc Newsl , vol.53 , pp. 1-13
    • Welch, L.R.1
  • 102
    • 78650906670 scopus 로고    scopus 로고
    • Bayesian nonparametric hidden Markov models with application to the analysis of copy-number-variation in mammalian genomes
    • Yau C, Papaspiliopoulos O, Roberts G, Holmes C (2011) Bayesian nonparametric hidden Markov models with application to the analysis of copy-number-variation in mammalian genomes. J R Stat Soc Ser B 73: 37-57.
    • (2011) J R Stat Soc Ser B , vol.73 , pp. 37-57
    • Yau, C.1    Papaspiliopoulos, O.2    Roberts, G.3    Holmes, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.