메뉴 건너뛰기




Volumn 11, Issue 4, 2012, Pages

A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data

Author keywords

Bayesian statistics; HMM; MCMC; Microarray time course data

Indexed keywords

TRANSCRIPTION FACTOR FOXC2;

EID: 84866453483     PISSN: None     EISSN: 15446115     Source Type: Journal    
DOI: 10.1515/1544-6115.1778     Document Type: Article
Times cited : (6)

References (33)
  • 2
    • 33847629949 scopus 로고    scopus 로고
    • Dynamic changes in gene expression profiles of 22q11 and related orthologous genes during mouse development
    • DOI 10.1016/j.gene.2006.12.026, PII S0378111906007566
    • Amati, F., M. Biancolella, A. Farcomeni, S. Giallonardi, D. Bueno, S.and Minella, L. Vecchione, G. Chillemi, A. Desideri, and G. Novelli (2007): "Dynamic changes in gene expression profiles of 22q11 and related orthologous genes during mouse development", Gene, 391, 91-102. (Pubitemid 46356789)
    • (2007) Gene , vol.391 , Issue.1-2 , pp. 91-102
    • Amati, F.1    Biancolella, M.2    Farcomeni, A.3    Giallonardi, S.4    Bueno, S.5    Minella, D.6    Vecchione, L.7    Chillemi, G.8    Desideri, A.9    Novelli, G.10
  • 3
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L., T. Petrie, G. Soules, and N. Weiss (1970): "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains", Annals of Mathematical Statistics, 41, 164-171.
    • (1970) Annals of Mathematical Statistics , vol.41 , pp. 164-171
    • Baum, L.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 4
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Y. Hochberg (1995): "Controlling the false discovery rate: A practical and powerful approach to multiple testing", Journal of the Royal Statistical Society (Ser. B), 57, 289-300.
    • (1995) Journal of the Royal Statistical Society (Ser. B) , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 6
    • 0003107701 scopus 로고    scopus 로고
    • Calculating posterior distributions and modal estimates in Markov mixture models
    • DOI 10.1016/0304-4076(95)01770-4
    • Chib, S. (1996): "Calculating posterior distributions and modal estimates in Markov mixture models", Journal of Econometrics, 75, 79-97. (Pubitemid 126372907)
    • (1996) Journal of Econometrics , vol.75 , Issue.1 , pp. 79-97
    • Chib, S.1
  • 10
    • 34547326633 scopus 로고    scopus 로고
    • Some results on the control of the false discovery rate under dependence
    • Farcomeni, A. (2007): "Some results on the control of the false discovery rate under dependence", Scandinavian Journal of Statistics, 34, 275-297.
    • (2007) Scandinavian Journal of Statistics , vol.34 , pp. 275-297
    • Farcomeni, A.1
  • 11
    • 33745242945 scopus 로고    scopus 로고
    • Functional hierarchical models for identifying genes with different time-course expression profiles
    • DOI 10.1111/j.1541-0420.2005.00505.x
    • Hong, F. and H. Li (2006): "Functional hierarchical models for identifying genes with different time-course expression profiles", Biometrics, 62, 534-544. (Pubitemid 43926659)
    • (2006) Biometrics , vol.62 , Issue.2 , pp. 534-544
    • Hong, F.1    Li, H.2
  • 12
    • 10444247376 scopus 로고    scopus 로고
    • Functional coefficient regression models for non-linear time series: A polynomial spline approach
    • Huang, J. and H. Shen (2004): "Functional coefficient regression models for non-linear time series: a polynomial spline approach", Scandinavian Journal of Statistics, 31, 809-822.
    • (2004) Scandinavian Journal of Statistics , vol.31 , pp. 809-822
    • Huang, J.1    Shen, H.2
  • 15
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma, P., C. Castillo-Davis, W. Zhong, and J. S. Liu (2006): "A data-driven clustering method for time course gene expression data", Nucleic Acids Research, 34, 1261-1269.
    • (2006) Nucleic Acids Research , vol.34 , pp. 1261-1269
    • Ma, P.1    Castillo-Davis, C.2    Zhong, W.3    Liu, J.S.4
  • 16
    • 49549108208 scopus 로고    scopus 로고
    • Penalized clustering of large scale functional data with multiple covariates
    • Ma, P. and W. Zhong (2008): "Penalized clustering of large scale functional data with multiple covariates", Journal of the American Statistical Association, 103, 625-636.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 625-636
    • Ma, P.1    Zhong, W.2
  • 19
    • 0031213093 scopus 로고    scopus 로고
    • A Bayesian approach to parameter estimation and interpolation of time-varying autoregressive processes using the gibbs sampler
    • IEE Proceedings
    • Rajan, J. (1997): "A bayesian approach to parameter estimation and interpolation of time-varying autoregressive processes using the gibbs sampler", Vision, Image and Signal Processing, IEE Proceedings, 144, 249-256.
    • (1997) Vision, Image and Signal Processing , vol.144 , pp. 249-256
    • Rajan, J.1
  • 21
    • 4944252468 scopus 로고    scopus 로고
    • Using hidden Markov models to analyze gene expression time course data
    • DOI 10.1093/bioinformatics/btg1036
    • Schliep, A., A. Schönhuth, and C. Steinhoff (2003): "Using hidden Markov models to analyze gene expression time course data", Bioinformatics, 19, i255-i263. (Pubitemid 41185629)
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 1
    • Schliep, A.1    Schonhuth, A.2    Steinhoff, C.3
  • 22
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978): "Estimating the dimension of a model", Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 23
    • 0036489069 scopus 로고    scopus 로고
    • Bayesian methods for hidden Markov models: Recursive computing in the 21st century
    • Scott, S. (2002): "Bayesian methods for hidden Markov models: recursive computing in the 21st century", Journal of the American Statistical Association, 97, 337-351.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 337-351
    • Scott, S.1
  • 27
    • 79954483579 scopus 로고    scopus 로고
    • Multiple testing for pattern identification, with applications to microarray time-course experiments
    • Sun, W. and Z. Wei (2011): "Multiple testing for pattern identification, with applications to microarray time-course experiments", Journal of the American Statistical Association, 106, 73-88.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 73-88
    • Sun, W.1    Wei, Z.2
  • 28
    • 76649143337 scopus 로고    scopus 로고
    • Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters
    • Tuyl, F., R. Gerlach, and K. Mengersen (2009): "Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters", Bayesian Analysis, 4, 151-158.
    • (2009) Bayesian Analysis , vol.4 , pp. 151-158
    • Tuyl, F.1    Gerlach, R.2    Mengersen, K.3
  • 29
    • 34248546301 scopus 로고    scopus 로고
    • A hidden Markov model-based approach for identifying timing differences in gene expression under different experimental factors
    • DOI 10.1093/bioinformatics/btl667
    • Yoneya, T. and H. Mamitsuka (2007): "A hidden markov model-based approach for identifying timing differences in gene expression under different experimental factors", Bioinformatics, 23, 842-849. (Pubitemid 47049918)
    • (2007) Bioinformatics , vol.23 , Issue.7 , pp. 842-849
    • Yoneya, T.1    Mamitsuka, H.2
  • 30
    • 33846036999 scopus 로고    scopus 로고
    • Hidden Markov models for microarray time course data in multiple biological conditions (with discussion)
    • Yuan, M. and C. Kendziorski (2006): "Hidden markov models for microarray time course data in multiple biological conditions (with discussion)", Journal of American Statistical Association, 101, 1323-1340.
    • (2006) Journal of American Statistical Association , vol.101 , pp. 1323-1340
    • Yuan, M.1    Kendziorski, C.2
  • 31
    • 33644639875 scopus 로고    scopus 로고
    • A novel HMM-based clustering algorithm for the analysis of gene expression time-course data
    • DOI 10.1016/j.csda.2005.07.007, PII S0167947305001544, Statistical Signal Extracting and Filtering
    • Zeng, Y. and J. Garcia-Frias (2006): "A novel HMM-based clustering algorithm for the analysis of gene expression time-course data", Computation Statistics and Data Analysis, 50, 2472-2494. (Pubitemid 43326113)
    • (2006) Computational Statistics and Data Analysis , vol.50 , Issue.9 , pp. 2472-2494
    • Zeng, Y.1    Garcia-Frias, J.2
  • 32
    • 77953426735 scopus 로고    scopus 로고
    • Analysis of factorial time-course microarrays with application to a clinical study of burn injury
    • Inflammation and Host Response to Injury Program
    • Zhou, B., W. Xu, D. Herndon, R. Tompkins, R. Davis, W. Xiaob, W.-H. Wong, and Inflammation and Host Response to Injury Program (2010): "Analysis of factorial time-course microarrays with application to a clinical study of burn injury", Proc. Natl. Acad. Sci. USA, 107, 9923-9928.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 9923-9928
    • Zhou, B.1    Xu, W.2    Herndon, D.3    Tompkins, R.4    Davis, R.5    Xiaob, W.6    Wong, W.-H.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.