메뉴 건너뛰기




Volumn 8, Issue 2, 2014, Pages 125-145

A comparison of some criteria for states selection in the latent Markov model for longitudinal data

Author keywords

Akaike information criterion; Bayesian information criterion; Entropy; Mixture model; Multivariate latent Markov model; Normalized entropy criterion

Indexed keywords

ALGORITHMS; ENTROPY; MAXIMUM LIKELIHOOD ESTIMATION; MONTE CARLO METHODS;

EID: 84901644195     PISSN: 18625347     EISSN: 18625355     Source Type: Journal    
DOI: 10.1007/s11634-013-0154-2     Document Type: Article
Times cited : (58)

References (38)
  • 2
    • 33644753140 scopus 로고    scopus 로고
    • Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities
    • Bartolucci F (2006) Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities. J Royal Stat Soc Ser B 68: 155-178.
    • (2006) J Royal Stat Soc Ser B , vol.68 , pp. 155-178
    • Bartolucci, F.1
  • 3
    • 33845755393 scopus 로고    scopus 로고
    • A latent Markov model for detecting patterns of criminal activity
    • Bartolucci F, Pennoni F, Francis B (2007) A latent Markov model for detecting patterns of criminal activity. J Royal Stat Soc Ser A 170: 115-132.
    • (2007) J Royal Stat Soc Ser A , vol.170 , pp. 115-132
    • Bartolucci, F.1    Pennoni, F.2    Francis, B.3
  • 5
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41: 164-171.
    • (1970) Ann Math Stat , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 6
    • 0000308948 scopus 로고    scopus 로고
    • Using the classification likelihood to choose the number of clusters
    • Biernacki C, Govaert G (1997) Using the classification likelihood to choose the number of clusters. Comput Sci Stat 29: 451-457.
    • (1997) Comput Sci Stat , vol.29 , pp. 451-457
    • Biernacki, C.1    Govaert, G.2
  • 7
    • 0033236321 scopus 로고    scopus 로고
    • Choosing models in model-based clustering and discriminant analysis
    • Biernacki C, Govaert G (1999) Choosing models in model-based clustering and discriminant analysis. J Stat Comput Simul 64: 49-71.
    • (1999) J Stat Comput Simul , vol.64 , pp. 49-71
    • Biernacki, C.1    Govaert, G.2
  • 8
    • 0033105385 scopus 로고    scopus 로고
    • An improvement of the NEC criterion for assessing the number of clusters in a mixture model
    • Biernacki C, Celeux G, Govaert G (1999) An improvement of the NEC criterion for assessing the number of clusters in a mixture model. Pattern Recognit Lett 20: 267-272.
    • (1999) Pattern Recognit Lett , vol.20 , pp. 267-272
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 9
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Biernacki C, Celeux G, Govaert G (2000) Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans Pattern Anal Mach Intel 22: 719-725.
    • (2000) IEEE Trans Pattern Anal Mach Intel , vol.22 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 10
    • 34250108028 scopus 로고
    • Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions
    • Bozdogan H (1987) Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika 52: 345-370.
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 11
    • 0002356276 scopus 로고
    • Choosing the number of component clusters in the mixture-model using a new informational complexity criterion of the inverse-Fisher information matrix
    • In: Opitz O, Lausen B, Klar R (eds) Springer, Berlin
    • Bozdogan H (1993) Choosing the number of component clusters in the mixture-model using a new informational complexity criterion of the inverse-Fisher information matrix. In: Opitz O, Lausen B, Klar R (eds) Information and classification. Springer, Berlin, pp 40-54.
    • (1993) Information and classification , pp. 40-54
    • Bozdogan, H.1
  • 12
    • 53549114249 scopus 로고    scopus 로고
    • Selecting hidden Markov model state number with cross-validated likelihood
    • Celeux G, Durand JB (2008) Selecting hidden Markov model state number with cross-validated likelihood. Comput Stat 23: 541-564.
    • (2008) Comput Stat , vol.23 , pp. 541-564
    • Celeux, G.1    Durand, J.B.2
  • 13
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • Celeux G, Soromenho G (1996) An entropy criterion for assessing the number of clusters in a mixture model. J Classif 13: 195-212.
    • (1996) J Classif , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 14
    • 84901590816 scopus 로고    scopus 로고
    • Quaderni di Dipartimento 7, Dipartimento di Scienze Statistiche "Paolo Fortunati" Alma Mater Studiorum Università di Bologna
    • Costa M, De Angelis L (2010) Model selection in hidden Markov models: a simulation study. Quaderni di Dipartimento 7, Dipartimento di Scienze Statistiche "Paolo Fortunati" Alma Mater Studiorum Università di Bologna.
    • (2010) Model selection in hidden Markov models: A simulation study
    • Costa, M.1    De Angelis, L.2
  • 15
  • 16
    • 79959865799 scopus 로고    scopus 로고
    • Model selection for the binary latent class model: A Monte Carlo simulation
    • In: Batagelj V, Bock HH, Ferligoj A, Žiberna A (eds) Springer, Berlin
    • Dias JG (2006) Model selection for the binary latent class model: A Monte Carlo simulation. In: Batagelj V, Bock HH, Ferligoj A, Žiberna A (eds) Data science and classification. Springer, Berlin, pp 91-99.
    • (2006) Data science and classification , pp. 91-99
    • Dias, J.G.1
  • 18
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97: 611-631.
    • (2002) J Am Stat Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 19
    • 85041975304 scopus 로고
    • Exploratory latent structure analysis using both identifiable and unidentifiable models
    • Goodman LA (1974) Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61: 215-231.
    • (1974) Biometrika , vol.61 , pp. 215-231
    • Goodman, L.A.1
  • 20
    • 38049135335 scopus 로고
    • Another interpretation of the EM algorithm for mixture distributions
    • Hathaway RJ (1986) Another interpretation of the EM algorithm for mixture distributions. Stat Probab Lett 4: 53-56.
    • (1986) Stat Probab Lett , vol.4 , pp. 53-56
    • Hathaway, R.J.1
  • 21
    • 23744447734 scopus 로고    scopus 로고
    • Efficient computation of the hidden Markov model entropy for a given observation sequence
    • Hernando D, Crespi V, Cybenko G (2005) Efficient computation of the hidden Markov model entropy for a given observation sequence. IEEE Trans Inform Theory 51: 2681-2685.
    • (2005) IEEE Trans Inform Theory , vol.51 , pp. 2681-2685
    • Hernando, D.1    Crespi, V.2    Cybenko, G.3
  • 22
    • 84981423152 scopus 로고
    • A corrected Akaike information criterion for vector autoregressive model selection
    • Hurvich CM, Tsai CL (1993) A corrected Akaike information criterion for vector autoregressive model selection. J Time Ser Anal 14: 271-279.
    • (1993) J Time Ser Anal , vol.14 , pp. 271-279
    • Hurvich, C.M.1    Tsai, C.L.2
  • 27
    • 26644438098 scopus 로고    scopus 로고
    • Clustering based on a multilayer mixture model
    • Li J (2005) Clustering based on a multilayer mixture model. J Comput Graph Stat 14: 547-568.
    • (2005) J Comput Graph Stat , vol.14 , pp. 547-568
    • Li, J.1
  • 28
    • 0642281964 scopus 로고    scopus 로고
    • Model selection information criteria for non-nested latent class models
    • Lin TH, Dayton CM (1997) Model selection information criteria for non-nested latent class models. J Educ Behav Stat 22: 249-264.
    • (1997) J Educ Behav Stat , vol.22 , pp. 249-264
    • Lin, T.H.1    Dayton, C.M.2
  • 29
    • 0035741575 scopus 로고    scopus 로고
    • Latent class factor and cluster models, bi-plots, and related graphical displays
    • Magidson J, Vermunt JK (2001) Latent class factor and cluster models, bi-plots, and related graphical displays. Sociol Methodol 31: 223-264.
    • (2001) Sociol Methodol , vol.31 , pp. 223-264
    • Magidson, J.1    Vermunt, J.K.2
  • 32
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
    • Nylund KL, Asparouhov T, Muthén BO (2007) Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct Equ Model 14: 535-569.
    • (2007) Struct Equ Model , vol.14 , pp. 535-569
    • Nylund, K.L.1    Asparouhov, T.2    Muthén, B.O.3
  • 33
    • 85012815100 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6: 461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 34
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81: 82-86.
    • (1986) J Am Stat Assoc , vol.81 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 35
    • 45349099441 scopus 로고    scopus 로고
    • Hidden Markov models and the Baum-Welch algorithm
    • Welch LR (2003) Hidden Markov models and the Baum-Welch algorithm. IEEE Inform Theory Soc Newslett 53: 1-13.
    • (2003) IEEE Inform Theory Soc Newslett , vol.53 , pp. 1-13
    • Welch, L.R.1
  • 37
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • Wolfe JH (1970) Pattern clustering by multivariate mixture analysis. Multivar Behav Res 5: 329-350.
    • (1970) Multivar Behav Res , vol.5 , pp. 329-350
    • Wolfe, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.