메뉴 건너뛰기




Volumn 97, Issue 457, 2002, Pages 337-351

Bayesian methods for hidden Markov models: Recursive computing in the 21st century

Author keywords

Forward backward recursion; Gibbs sampler; Kalman filter; Local computation; Markov chain Monte Carlo

Indexed keywords


EID: 0036489069     PISSN: 01621459     EISSN: None     Source Type: Journal    
DOI: 10.1198/016214502753479464     Document Type: Review
Times cited : (416)

References (63)
  • 21
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 24
    • 0001342006 scopus 로고
    • A new approach to the economic analysis of nonstationary time series and the business cycle
    • (1989) Econometrica , vol.57 , pp. 357-384
    • Hamilton, J.D.1
  • 25
  • 26
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 35
    • 0001789822 scopus 로고
    • Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 56
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixtures with an unknown number of components - An alternative to reversible jump methods
    • (2000) The Annals of Statistics , vol.28 , pp. 40-74


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.