-
1
-
-
84872094183
-
Cellular and molecular mechanisms of muscle atrophy
-
Bonaldo P., Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 2013, 6:25-39.
-
(2013)
Dis. Model. Mech.
, vol.6
, pp. 25-39
-
-
Bonaldo, P.1
Sandri, M.2
-
2
-
-
84882733761
-
Mechanisms regulating skeletal muscle growth and atrophy
-
Schiaffino S., et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013, 280:4294-4314.
-
(2013)
FEBS J.
, vol.280
, pp. 4294-4314
-
-
Schiaffino, S.1
-
3
-
-
84877965001
-
Regulation of mTORC1 and its impact on gene expression at a glance
-
Laplante M., Sabatini D.M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 2013, 126:1713-1719.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 1713-1719
-
-
Laplante, M.1
Sabatini, D.M.2
-
4
-
-
84885174647
-
Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome
-
Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol. 2013, 45:2121-2129.
-
(2013)
Int. J. Biochem. Cell Biol.
, vol.45
, pp. 2121-2129
-
-
Sandri, M.1
-
5
-
-
0347285363
-
Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression
-
Lecker S.H., et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004, 18:39-51.
-
(2004)
FASEB J.
, vol.18
, pp. 39-51
-
-
Lecker, S.H.1
-
6
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari C., et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6:458-471.
-
(2007)
Cell Metab.
, vol.6
, pp. 458-471
-
-
Mammucari, C.1
-
7
-
-
11144356337
-
FoxO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy
-
Sandri M., et al. FoxO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117:399-412.
-
(2004)
Cell
, vol.117
, pp. 399-412
-
-
Sandri, M.1
-
8
-
-
84866742560
-
TGFbeta signalling in context
-
Massague J. TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13:616-630.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 616-630
-
-
Massague, J.1
-
9
-
-
27644494876
-
Smad transcription factors
-
Massague J., et al. Smad transcription factors. Genes Dev. 2005, 19:2783-2810.
-
(2005)
Genes Dev.
, vol.19
, pp. 2783-2810
-
-
Massague, J.1
-
10
-
-
0030765945
-
Smad6 inhibits signalling by the TGF-beta superfamily
-
Imamura T., et al. Smad6 inhibits signalling by the TGF-beta superfamily. Nature 1997, 389:622-626.
-
(1997)
Nature
, vol.389
, pp. 622-626
-
-
Imamura, T.1
-
11
-
-
0031587828
-
The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling
-
Hayashi H., et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997, 89:1165-1173.
-
(1997)
Cell
, vol.89
, pp. 1165-1173
-
-
Hayashi, H.1
-
12
-
-
84864020480
-
Transforming growth factor β inhibits bone morphogenetic protein-induced transcription through novel phosphorylated Smad1/5-Smad3 complexes
-
Gronroos E., et al. Transforming growth factor β inhibits bone morphogenetic protein-induced transcription through novel phosphorylated Smad1/5-Smad3 complexes. Mol. Cell. Biol. 2012, 32:2904-2916.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 2904-2916
-
-
Gronroos, E.1
-
13
-
-
0031010050
-
Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member
-
McPherron A.C., et al. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387:83-90.
-
(1997)
Nature
, vol.387
, pp. 83-90
-
-
McPherron, A.C.1
-
14
-
-
0030840359
-
Double muscling in cattle due to mutations in the myostatin gene
-
McPherron A.C., Lee S.J. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:12457-12461.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 12457-12461
-
-
McPherron, A.C.1
Lee, S.J.2
-
15
-
-
33745577150
-
A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep
-
Clop A., et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 2006, 38:813-818.
-
(2006)
Nat. Genet.
, vol.38
, pp. 813-818
-
-
Clop, A.1
-
16
-
-
2942735123
-
Myostatin mutation associated with gross muscle hypertrophy in a child
-
Schuelke M., et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 2004, 350:2682-2688.
-
(2004)
N. Engl. J. Med.
, vol.350
, pp. 2682-2688
-
-
Schuelke, M.1
-
17
-
-
8444243360
-
Regulation of muscle mass by myostatin
-
Lee S.J. Regulation of muscle mass by myostatin. Annu. Rev. Cell Dev. Biol. 2004, 20:61-86.
-
(2004)
Annu. Rev. Cell Dev. Biol.
, vol.20
, pp. 61-86
-
-
Lee, S.J.1
-
18
-
-
0032871622
-
Myostatin and the control of skeletal muscle mass
-
Lee S.J., McPherron A.C. Myostatin and the control of skeletal muscle mass. Curr. Opin. Genet. Dev. 1999, 9:604-607.
-
(1999)
Curr. Opin. Genet. Dev.
, vol.9
, pp. 604-607
-
-
Lee, S.J.1
McPherron, A.C.2
-
19
-
-
66149128151
-
Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity
-
Amthor H., et al. Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:7479-7484.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 7479-7484
-
-
Amthor, H.1
-
20
-
-
84865531266
-
Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway
-
Lee S.J., et al. Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2353-E2360.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
-
-
Lee, S.J.1
-
21
-
-
66749167618
-
Smad2 and 3 transcription factors control muscle mass in adulthood
-
Sartori R., et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol. 2009, 296:C1248-C1257.
-
(2009)
Am. J. Physiol. Cell Physiol.
, vol.296
-
-
Sartori, R.1
-
22
-
-
29144466479
-
Regulation of muscle growth by multiple ligands signaling through activin type II receptors
-
Lee S.J., et al. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:18117-18122.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 18117-18122
-
-
Lee, S.J.1
-
23
-
-
0037165983
-
Induction of cachexia in mice by systemically administered myostatin
-
Zimmers T.A., et al. Induction of cachexia in mice by systemically administered myostatin. Science 2002, 296:1486-1488.
-
(2002)
Science
, vol.296
, pp. 1486-1488
-
-
Zimmers, T.A.1
-
24
-
-
34347223985
-
Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression
-
Durieux A.C., et al. Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression. Endocrinology 2007, 148:3140-3147.
-
(2007)
Endocrinology
, vol.148
, pp. 3140-3147
-
-
Durieux, A.C.1
-
25
-
-
0141615887
-
Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin
-
Reisz-Porszasz S., et al. Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am. J. Physiol. Endocrinol. Metab. 2003, 285:E876-E888.
-
(2003)
Am. J. Physiol. Endocrinol. Metab.
, vol.285
-
-
Reisz-Porszasz, S.1
-
26
-
-
84881253436
-
Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway
-
Sandri M., et al. Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology 2013, 14:303-323.
-
(2013)
Biogerontology
, vol.14
, pp. 303-323
-
-
Sandri, M.1
-
27
-
-
84887126522
-
BMP signaling controls muscle mass
-
Sartori R., et al. BMP signaling controls muscle mass. Nat. Genet. 2013, 45:1309-1318.
-
(2013)
Nat. Genet.
, vol.45
, pp. 1309-1318
-
-
Sartori, R.1
-
28
-
-
38349145459
-
Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways
-
Lee S.J. Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways. PLoS ONE 2007, 2:e789.
-
(2007)
PLoS ONE
, vol.2
-
-
Lee, S.J.1
-
29
-
-
84863758115
-
Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin
-
Winbanks C.E., et al. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J. Cell Biol. 2012, 197:997-1008.
-
(2012)
J. Cell Biol.
, vol.197
, pp. 997-1008
-
-
Winbanks, C.E.1
-
30
-
-
0037841469
-
Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains
-
Hill J.J., et al. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol. Endocrinol. 2003, 17:1144-1154.
-
(2003)
Mol. Endocrinol.
, vol.17
, pp. 1144-1154
-
-
Hill, J.J.1
-
31
-
-
53049107495
-
Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11
-
Kondas K., et al. Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11. J. Biol. Chem. 2008, 283:23677-23684.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23677-23684
-
-
Kondas, K.1
-
32
-
-
84867220538
-
Ubiquitous Gasp1 overexpression in mice leads mainly to a hypermuscular phenotype
-
Monestier O., et al. Ubiquitous Gasp1 overexpression in mice leads mainly to a hypermuscular phenotype. BMC Genomics 2012, 13:541.
-
(2012)
BMC Genomics
, vol.13
, pp. 541
-
-
Monestier, O.1
-
33
-
-
84884629522
-
Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2
-
Lee Y.S., Lee S.J. Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E3713-E3722.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
-
-
Lee, Y.S.1
Lee, S.J.2
-
34
-
-
77957353583
-
Regulation of muscle mass by follistatin and activins
-
Lee S.J., et al. Regulation of muscle mass by follistatin and activins. Mol. Endocrinol. 2010, 24:1998-2008.
-
(2010)
Mol. Endocrinol.
, vol.24
, pp. 1998-2008
-
-
Lee, S.J.1
-
35
-
-
84901010269
-
Elevated expression of activins promotes muscle wasting and cachexia
-
Chen J.L., et al. Elevated expression of activins promotes muscle wasting and cachexia. FASEB J. 2014, 28:1711-1723.
-
(2014)
FASEB J.
, vol.28
, pp. 1711-1723
-
-
Chen, J.L.1
-
36
-
-
66749188280
-
Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size
-
Trendelenburg A.U., et al. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 2009, 296:C1258-C1270.
-
(2009)
Am. J. Physiol. Cell Physiol.
, vol.296
-
-
Trendelenburg, A.U.1
-
37
-
-
80054966387
-
Myostatin induces degradation of sarcomeric proteins through a Smad3 signaling mechanism during skeletal muscle wasting
-
Lokireddy S., et al. Myostatin induces degradation of sarcomeric proteins through a Smad3 signaling mechanism during skeletal muscle wasting. Mol. Endocrinol. 2011, 25:1936-1949.
-
(2011)
Mol. Endocrinol.
, vol.25
, pp. 1936-1949
-
-
Lokireddy, S.1
-
38
-
-
84886444687
-
Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo
-
Goodman C.A., et al. Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo. Mol. Endocrinol. 2013, 27:1946-1957.
-
(2013)
Mol. Endocrinol.
, vol.27
, pp. 1946-1957
-
-
Goodman, C.A.1
-
39
-
-
58149471229
-
Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle
-
Amirouche A., et al. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 2009, 150:286-294.
-
(2009)
Endocrinology
, vol.150
, pp. 286-294
-
-
Amirouche, A.1
-
40
-
-
84871874419
-
Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins
-
Hulmi J.J., et al. Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins. Am. J. Physiol. Endocrinol. Metab. 2013, 304:E41-E50.
-
(2013)
Am. J. Physiol. Endocrinol. Metab.
, vol.304
-
-
Hulmi, J.J.1
-
41
-
-
80054967285
-
Myostatin inactivation increases myotube size through regulation of translational initiation machinery
-
Rodriguez J., et al. Myostatin inactivation increases myotube size through regulation of translational initiation machinery. J. Cell. Biochem. 2011, 112:3531-3542.
-
(2011)
J. Cell. Biochem.
, vol.112
, pp. 3531-3542
-
-
Rodriguez, J.1
-
42
-
-
64749116516
-
Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice
-
Welle S., et al. Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. Am. J. Physiol. Endocrinol. Metab. 2009, 296:E567-E572.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.296
-
-
Welle, S.1
-
43
-
-
84891538950
-
Myostatin signaling regulates Akt activity via the regulation of miR-486 expression
-
Hitachi K., et al. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression. Int. J. Biochem. Cell Biol. 2014, 47:93-103.
-
(2014)
Int. J. Biochem. Cell Biol.
, vol.47
, pp. 93-103
-
-
Hitachi, K.1
-
44
-
-
2342471301
-
Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis
-
Conery A.R., et al. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol 2004, 6:366-372.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 366-372
-
-
Conery, A.R.1
-
45
-
-
2342647439
-
PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3
-
Remy I., et al. PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol 2004, 6:358-365.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 358-365
-
-
Remy, I.1
-
46
-
-
77958537905
-
Akt deficiency attenuates muscle size and function but not the response to ActRIIB inhibition
-
Goncalves M.D., et al. Akt deficiency attenuates muscle size and function but not the response to ActRIIB inhibition. PLoS ONE 2010, 5:e12707.
-
(2010)
PLoS ONE
, vol.5
-
-
Goncalves, M.D.1
-
47
-
-
77952548279
-
Extracellular BMP-antagonist regulation in development and disease: tied up in knots
-
Walsh D.W., et al. Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol. 2010, 20:244-256.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 244-256
-
-
Walsh, D.W.1
-
48
-
-
57349171954
-
BMP type I receptor inhibition reduces heterotopic [corrected] ossification
-
Yu P.B., et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat. Med. 2008, 14:1363-1369.
-
(2008)
Nat. Med.
, vol.14
, pp. 1363-1369
-
-
Yu, P.B.1
-
49
-
-
62549145351
-
Identification of progenitor cells that contribute to heterotopic skeletogenesis
-
Lounev V.Y., et al. Identification of progenitor cells that contribute to heterotopic skeletogenesis. J. Bone Joint Surg. Am. 2009, 91:652-663.
-
(2009)
J. Bone Joint Surg. Am.
, vol.91
, pp. 652-663
-
-
Lounev, V.Y.1
-
50
-
-
78651330854
-
BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells
-
Ono Y., et al. BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death Differ. 2010, 18:222-234.
-
(2010)
Cell Death Differ.
, vol.18
, pp. 222-234
-
-
Ono, Y.1
-
51
-
-
79959927764
-
Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue
-
Aoyama K., et al. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue. BMC Dev. Biol. 2011, 11:44.
-
(2011)
BMC Dev. Biol.
, vol.11
, pp. 44
-
-
Aoyama, K.1
-
52
-
-
84887514929
-
The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass
-
Winbanks C.E., et al. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J. Cell Biol. 2013, 203:345-357.
-
(2013)
J. Cell Biol.
, vol.203
, pp. 345-357
-
-
Winbanks, C.E.1
-
53
-
-
77957244932
-
Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases
-
Moresi V., et al. Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 2010, 143:35-45.
-
(2010)
Cell
, vol.143
, pp. 35-45
-
-
Moresi, V.1
-
54
-
-
84655163944
-
Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome
-
Le Goff C., et al. Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat. Genet. 2012, 44:85-88.
-
(2012)
Nat. Genet.
, vol.44
, pp. 85-88
-
-
Le Goff, C.1
-
55
-
-
77955642517
-
Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival
-
Zhou X., et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 2010, 142:531-543.
-
(2010)
Cell
, vol.142
, pp. 531-543
-
-
Zhou, X.1
-
56
-
-
0037191752
-
Functional improvement of dystrophic muscle by myostatin blockade
-
Bogdanovich S., et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002, 420:418-421.
-
(2002)
Nature
, vol.420
, pp. 418-421
-
-
Bogdanovich, S.1
-
57
-
-
44849140764
-
A Phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy
-
Wagner K.R., et al. A Phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann. Neurol. 2008, 63:561-571.
-
(2008)
Ann. Neurol.
, vol.63
, pp. 561-571
-
-
Wagner, K.R.1
-
58
-
-
0036895736
-
Loss of myostatin attenuates severity of muscular dystrophy in mdx mice
-
Wagner K.R., et al. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann. Neurol. 2002, 52:832-836.
-
(2002)
Ann. Neurol.
, vol.52
, pp. 832-836
-
-
Wagner, K.R.1
-
59
-
-
84906264366
-
Propeptide-mediated inhibition of myostatin increases muscle mass through inhibiting proteolytic pathways in aged mice
-
Collins-Hooper H., et al. Propeptide-mediated inhibition of myostatin increases muscle mass through inhibiting proteolytic pathways in aged mice. J. Gerontol. A: Biol. Sci. Med. Sci. 2014, 10.1093/gerona/glt170.
-
(2014)
J. Gerontol. A: Biol. Sci. Med. Sci.
-
-
Collins-Hooper, H.1
-
60
-
-
84874105144
-
Food restriction reverses the hyper-muscular phenotype and force generation capacity deficit of the myostatin null mouse
-
Matsakas A., et al. Food restriction reverses the hyper-muscular phenotype and force generation capacity deficit of the myostatin null mouse. Int. J. Sports Med. 2013, 34:223-231.
-
(2013)
Int. J. Sports Med.
, vol.34
, pp. 223-231
-
-
Matsakas, A.1
-
61
-
-
33846902022
-
Lack of myostatin results in excessive muscle growth but impaired force generation
-
Amthor H., et al. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1835-1840.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 1835-1840
-
-
Amthor, H.1
-
62
-
-
84871231934
-
Combined effect of AAV-U7-induced dystrophin exon skipping and soluble activin type IIB receptor in mdx mice
-
Hoogaars W.M., et al. Combined effect of AAV-U7-induced dystrophin exon skipping and soluble activin type IIB receptor in mdx mice. Hum. Gene Ther. 2012, 23:1269-1279.
-
(2012)
Hum. Gene Ther.
, vol.23
, pp. 1269-1279
-
-
Hoogaars, W.M.1
-
63
-
-
84355162304
-
Exercise training attenuates the hypermuscular phenotype and restores skeletal muscle function in the myostatin null mouse
-
Matsakas A., et al. Exercise training attenuates the hypermuscular phenotype and restores skeletal muscle function in the myostatin null mouse. Exp. Physiol. 2012, 97:125-140.
-
(2012)
Exp. Physiol.
, vol.97
, pp. 125-140
-
-
Matsakas, A.1
-
64
-
-
84892954839
-
An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy
-
Lach-Trifilieff E., et al. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol. Cell. Biol. 2014, 34:606-618.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 606-618
-
-
Lach-Trifilieff, E.1
-
65
-
-
84880290546
-
Foxc2 induces Wnt4 and Bmp4 expression during muscle regeneration and osteogenesis
-
Gozo M.C., et al. Foxc2 induces Wnt4 and Bmp4 expression during muscle regeneration and osteogenesis. Cell Death Differ. 2013, 20:1031-1042.
-
(2013)
Cell Death Differ.
, vol.20
, pp. 1031-1042
-
-
Gozo, M.C.1
-
66
-
-
0036021057
-
Ectopic bone formation by electroporatic transfer of bone morphogenetic protein-4 gene
-
Kishimoto K.N., et al. Ectopic bone formation by electroporatic transfer of bone morphogenetic protein-4 gene. Bone 2002, 31:340-347.
-
(2002)
Bone
, vol.31
, pp. 340-347
-
-
Kishimoto, K.N.1
-
67
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
68
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N., et al. Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
-
69
-
-
9144224360
-
Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes
-
Tanida I., et al. Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J. Biol. Chem. 2004, 279:47704-47710.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 47704-47710
-
-
Tanida, I.1
-
70
-
-
4344624322
-
LC3 conjugation system in mammalian autophagy
-
Tanida I., et al. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 2004, 36:2503-2518.
-
(2004)
Int. J. Biochem. Cell Biol.
, vol.36
, pp. 2503-2518
-
-
Tanida, I.1
-
71
-
-
84870980670
-
Ubiquitination and selective autophagy
-
Shaid S., et al. Ubiquitination and selective autophagy. Cell Death Differ. 2013, 20:21-30.
-
(2013)
Cell Death Differ.
, vol.20
, pp. 21-30
-
-
Shaid, S.1
-
72
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin V., et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 2009, 33:505-516.
-
(2009)
Mol. Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
-
73
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282:24131-24145.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
|