메뉴 건너뛰기




Volumn 4, Issue 4, 2014, Pages 281-295

Symbolic Data Analysis: Another look at the interaction of Data Mining and Statistics

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; MODEL AUTOMOBILES;

EID: 84906487104     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1133     Document Type: Article
Times cited : (44)

References (118)
  • 1
    • 79953038607 scopus 로고    scopus 로고
    • Far beyond the classical data models: symbolic data analysis
    • Noirhomme-Fraiture M, Brito P. Far beyond the classical data models: symbolic data analysis. Stat Anal Data Min 2011, 4:157-170.
    • (2011) Stat Anal Data Min , vol.4 , pp. 157-170
    • Noirhomme-Fraiture, M.1    Brito, P.2
  • 3
    • 84892581988 scopus 로고    scopus 로고
    • Data stream summarization by histograms clustering
    • Giudici P, Ingrassia S, Vichi M, eds. Berlin/Heidelberg: Springer
    • Balzanella A, Rivoli L, Verde R. Data stream summarization by histograms clustering. In: Giudici P, Ingrassia S, Vichi M, eds. Statistical Models for Data Analysis. Berlin/Heidelberg: Springer; 2013, 27-35.
    • (2013) Statistical Models for Data Analysis , pp. 27-35
    • Balzanella, A.1    Rivoli, L.2    Verde, R.3
  • 6
    • 84858216480 scopus 로고    scopus 로고
    • Modelling interval data with normal and skew-normal distributions
    • Brito P, Duarte Silva AP. Modelling interval data with normal and skew-normal distributions. J Appl Stat 2012, 39:3-20.
    • (2012) J Appl Stat , vol.39 , pp. 3-20
    • Brito, P.1    Duarte Silva, A.P.2
  • 7
    • 84906500587 scopus 로고    scopus 로고
    • MAINT.DATA: model and analyze interval data. R Package, version 0.2. Available at:. (Accessed August)
    • Duarte Silva AP, Brito P. MAINT.DATA: model and analyze interval data. R Package, version 0.2. Available at: http://cran.r-project.org/web/packages/MAINT.Data/index.html. (Accessed August 2014)
    • (2014)
    • Duarte Silva, A.P.1    Brito, P.2
  • 8
    • 0000748168 scopus 로고
    • Theory of capacities
    • Choquet G. Theory of capacities. Ann Institut Fourier 1954, 5:131-295.
    • (1954) Ann Institut Fourier , vol.5 , pp. 131-295
    • Choquet, G.1
  • 9
    • 0002034469 scopus 로고    scopus 로고
    • Properties of measures of information in evidence and possibility theories
    • Dubois D, Prade H. Properties of measures of information in evidence and possibility theories. Fuzzy Sets Syst 1999, 100:35-49.
    • (1999) Fuzzy Sets Syst , vol.100 , pp. 35-49
    • Dubois, D.1    Prade, H.2
  • 10
    • 0034190746 scopus 로고    scopus 로고
    • Towards a unified theory of imprecise probability
    • Walley P. Towards a unified theory of imprecise probability. Int J Approx Reason 2000, 24:125-148.
    • (2000) Int J Approx Reason , vol.24 , pp. 125-148
    • Walley, P.1
  • 11
    • 34249753143 scopus 로고
    • Probabilist, possibilist and belief objects for knowledge analysis
    • Diday E. Probabilist, possibilist and belief objects for knowledge analysis. Ann Oper Res 1995, 55:227-276.
    • (1995) Ann Oper Res , vol.55 , pp. 227-276
    • Diday, E.1
  • 12
    • 79953058596 scopus 로고    scopus 로고
    • Symbolic clustering of probabilistic data
    • Rizzi A, Vichi M, Bock H-H, eds. Berlin/Heidelberg: Springer
    • Brito P. Symbolic clustering of probabilistic data. In: Rizzi A, Vichi M, Bock H-H, eds. Advances in Data Science and Classification. Berlin/Heidelberg: Springer; 1998, 385-389.
    • (1998) Advances in Data Science and Classification , pp. 385-389
    • Brito, P.1
  • 13
    • 84948843918 scopus 로고    scopus 로고
    • Hierarchical and pyramidal clustering
    • Diday E, Noirhomme-Fraiture M, eds. Chichester, UK: John Wiley & Sons
    • Brito P, De Carvalho FAT. Hierarchical and pyramidal clustering. In: Diday E, Noirhomme-Fraiture M, eds. Symbolic Data Analysis and the Sodas Software. Chichester, UK: John Wiley & Sons; 2008, 181-203.
    • (2008) Symbolic Data Analysis and the Sodas Software , pp. 181-203
    • Brito, P.1    De Carvalho, F.A.T.2
  • 14
    • 84862232143 scopus 로고    scopus 로고
    • Symbolic PCA for histogram-valued data
    • Yokohama, Japan
    • Ichino M. Symbolic PCA for histogram-valued data. In: Proceedings of the IASC 2008, Yokohama, Japan, 2008.
    • (2008) Proceedings of the IASC 2008,
    • Ichino, M.1
  • 15
    • 79953056420 scopus 로고    scopus 로고
    • The quantile method for symbolic principal component analysis
    • Ichino M. The quantile method for symbolic principal component analysis. Stat Anal Data Min 2011, 4:184-198.
    • (2011) Stat Anal Data Min , vol.4 , pp. 184-198
    • Ichino, M.1
  • 17
    • 0042241641 scopus 로고
    • Proximity coefficients between boolean symbolic objects
    • Diday E, Lechevallier Y, Schader M, Bertrand P, Burtschy B, eds. Berlin/Heidelberg: Springer
    • De Carvalho FAT. Proximity coefficients between boolean symbolic objects. In: Diday E, Lechevallier Y, Schader M, Bertrand P, Burtschy B, eds. New Approaches in Classification and Data Analysis. Berlin/Heidelberg: Springer; 1994, 387-394.
    • (1994) New Approaches in Classification and Data Analysis , pp. 387-394
    • De Carvalho, F.A.T.1
  • 18
    • 0033206496 scopus 로고    scopus 로고
    • Usual operations with symbolic data under Normal Symbolic Form
    • Csernel M, De Carvalho FAT. Usual operations with symbolic data under Normal Symbolic Form. Appl Stoch Model Bus Ind 1999, 15:241-257.
    • (1999) Appl Stoch Model Bus Ind , vol.15 , pp. 241-257
    • Csernel, M.1    De Carvalho, F.A.T.2
  • 19
    • 84855736117 scopus 로고    scopus 로고
    • Bivariate symbolic regression models for interval-valued variables
    • Neto EAL, Cordeiro GM, de Carvalho FAT. Bivariate symbolic regression models for interval-valued variables. J Stat Comput Simul 2011, 81:1727-1744.
    • (2011) J Stat Comput Simul , vol.81 , pp. 1727-1744
    • Neto, E.A.L.1    Cordeiro, G.M.2    de Carvalho, F.A.T.3
  • 20
    • 78650213596 scopus 로고    scopus 로고
    • Likelihood functions and some maximum likelihood estimators for symbolic data
    • Le-Rademacher J, Billard L. Likelihood functions and some maximum likelihood estimators for symbolic data. J Stat Plan Inference 2011, 141:1593-1602.
    • (2011) J Stat Plan Inference , vol.141 , pp. 1593-1602
    • Le-Rademacher, J.1    Billard, L.2
  • 21
    • 22944492394 scopus 로고    scopus 로고
    • Two partitional methods for interval-valued data using Mahalanobis distances
    • Lemaître C, García CAR, Jesús AG, eds., 9th Ibero-American Conference on AI, Puebla, México: Springer Lecture Notes in Computer Science
    • De Souza RMCR, De Carvalho FAT, Tenorio CP. Two partitional methods for interval-valued data using Mahalanobis distances. In: Lemaître C, García CAR, Jesús AG, eds. Advances in Artificial Intelligence-Proceedings IBERAMIA 2004, 9th Ibero-American Conference on AI, Puebla, México: Springer Lecture Notes in Computer Science; 2004, 454-463.
    • (2004) Advances in Artificial Intelligence-Proceedings IBERAMIA 2004 , pp. 454-463
    • De Souza, R.M.C.R.1    De Carvalho, F.A.T.2    Tenorio, C.P.3
  • 22
    • 0036896227 scopus 로고    scopus 로고
    • On choosing and bounding probability metrics
    • Gibbs AL, Su FE. On choosing and bounding probability metrics. Int Stat Rev 2002, 70:419-435.
    • (2002) Int Stat Rev , vol.70 , pp. 419-435
    • Gibbs, A.L.1    Su, F.E.2
  • 25
    • 2942636167 scopus 로고    scopus 로고
    • Comparing dissimilarity measures for probabilistic symbolic objects
    • Zanasi A, Brebbia CA, Ebecken NFF, Melli P, eds., vol. . Southampton, UK: WIT Press
    • Malerba D, Esposito F, Monopoli M. Comparing dissimilarity measures for probabilistic symbolic objects. In: Zanasi A, Brebbia CA, Ebecken NFF, Melli P, eds. Data Mining III, Series Management Information Systems, vol. 6. Southampton, UK: WIT Press; 2002, 31-40.
    • (2002) Data Mining III, Series Management Information Systems , vol.6 , pp. 31-40
    • Malerba, D.1    Esposito, F.2    Monopoli, M.3
  • 26
    • 37949034947 scopus 로고    scopus 로고
    • An introduction to symbolic data analysis and the SODAS software
    • Diday E, Esposito F. An introduction to symbolic data analysis and the SODAS software. Intell Data Anal 2003, 7:583-602.
    • (2003) Intell Data Anal , vol.7 , pp. 583-602
    • Diday, E.1    Esposito, F.2
  • 27
    • 79960889644 scopus 로고    scopus 로고
    • Classification of symbolic objects: a lazy learning approach
    • Appice A, D'Amato C, Esposito F, Malerba D. Classification of symbolic objects: a lazy learning approach. Intell Data Anal 2006, 10:301-324.
    • (2006) Intell Data Anal , vol.10 , pp. 301-324
    • Appice, A.1    D'Amato, C.2    Esposito, F.3    Malerba, D.4
  • 28
    • 58949085012 scopus 로고    scopus 로고
    • Dynamic clustering of histogram data: using the right metric
    • Brito P, Bertrand P, Cucumel G, De Carvalho F, eds. Berlin/Heidelberg: Springer
    • Verde R, Irpino A. Dynamic clustering of histogram data: using the right metric. In: Brito P, Bertrand P, Cucumel G, De Carvalho F, eds. Selected Contributions in Data Analysis and Classification. Berlin/Heidelberg: Springer; 2007, 123-134.
    • (2007) Selected Contributions in Data Analysis and Classification , pp. 123-134
    • Verde, R.1    Irpino, A.2
  • 29
    • 84948777794 scopus 로고    scopus 로고
    • Dissimilarity and matching
    • Diday E, Noirhomme-Fraiture M, eds. Chichester, UK: John Wiley & Sons
    • Esposito F, Malerba D, Appice A. Dissimilarity and matching. In: Diday E, Noirhomme-Fraiture M, eds. Symbolic Data Analysis and the Sodas Software. Chichester, UK: John Wiley & Sons; 2008, 123-148.
    • (2008) Symbolic Data Analysis and the Sodas Software , pp. 123-148
    • Esposito, F.1    Malerba, D.2    Appice, A.3
  • 30
    • 2942726405 scopus 로고    scopus 로고
    • Dynamic clustering of interval data based on adaptive Chebyshev distances
    • De Souza RMCR, De Carvalho FAT. Dynamic clustering of interval data based on adaptive Chebyshev distances. Electron Lett 2004, 40:658-659.
    • (2004) Electron Lett , vol.40 , pp. 658-659
    • De Souza, R.M.C.R.1    De Carvalho, F.A.T.2
  • 31
    • 0346724786 scopus 로고    scopus 로고
    • Clustering of interval data based on city-block distances
    • De Souza RMCR, De Carvalho FAT. Clustering of interval data based on city-block distances. Pattern Recogn Lett 2004, 25:353-365.
    • (2004) Pattern Recogn Lett , vol.25 , pp. 353-365
    • De Souza, R.M.C.R.1    De Carvalho, F.A.T.2
  • 34
    • 33750148940 scopus 로고    scopus 로고
    • New clustering methods for interval data
    • Chavent M, Lechevallier Y, Verde R. New clustering methods for interval data. Comput Stat 2006, 21:211-229.
    • (2006) Comput Stat , vol.21 , pp. 211-229
    • Chavent, M.1    Lechevallier, Y.2    Verde, R.3
  • 35
    • 75449087623 scopus 로고    scopus 로고
    • Unsupervised pattern recognition models for mixed feature-type symbolic data
    • De Carvalho FAT, De Souza RMCR. Unsupervised pattern recognition models for mixed feature-type symbolic data. Pattern Recogn Lett 2010, 31:430-443.
    • (2010) Pattern Recogn Lett , vol.31 , pp. 430-443
    • De Carvalho, F.A.T.1    De Souza, R.M.C.R.2
  • 37
    • 0346778567 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms for mixed feature variables
    • Yang M-S, Hwang P-Y, Chen D-H. Fuzzy clustering algorithms for mixed feature variables. Fuzzy Sets Syst 2004, 141:301-317.
    • (2004) Fuzzy Sets Syst , vol.141 , pp. 301-317
    • Yang, M.-S.1    Hwang, P.-Y.2    Chen, D.-H.3
  • 38
    • 27744444692 scopus 로고    scopus 로고
    • A weighted fuzzy c-means clustering model for fuzzy data
    • D'Urso P, Giordani P. A weighted fuzzy c-means clustering model for fuzzy data. Comput Stat Data Anal 2006, 50:1496-1523.
    • (2006) Comput Stat Data Anal , vol.50 , pp. 1496-1523
    • D'Urso, P.1    Giordani, P.2
  • 39
    • 33845495645 scopus 로고    scopus 로고
    • Fuzzy c-means clustering methods for symbolic interval data
    • De Carvalho FAT. Fuzzy c-means clustering methods for symbolic interval data. Pattern Recogn Lett 2007, 28:423-437.
    • (2007) Pattern Recogn Lett , vol.28 , pp. 423-437
    • De Carvalho, F.A.T.1
  • 40
    • 77957828956 scopus 로고    scopus 로고
    • Robust interval competitive agglomeration clustering algorithm with outliers
    • Jeng J-T, Chuan C-C, Tseng C-C, Juan C-J. Robust interval competitive agglomeration clustering algorithm with outliers. Int J Fuzzy Syst 2010, 12:227-236.
    • (2010) Int J Fuzzy Syst , vol.12 , pp. 227-236
    • Jeng, J.-T.1    Chuan, C.-C.2    Tseng, C.-C.3    Juan, C.-J.4
  • 41
    • 35048881069 scopus 로고    scopus 로고
    • Clustering of interval-valued data using adaptive squared Euclidean distance
    • Pal NR, Kasabov N, Mudi RK, Pa S, Paruil SK, eds. Berlin/Heidelberg: Springer
    • De Souza RMCR, De Carvalho FAT, Silva FCD. Clustering of interval-valued data using adaptive squared Euclidean distance. In: Pal NR, Kasabov N, Mudi RK, Pa S, Paruil SK, eds. Neural Information Processing - Proceedings of the ICONIP. Berlin/Heidelberg: Springer; 2004, 775-780.
    • (2004) Neural Information Processing - Proceedings of the ICONIP , pp. 775-780
    • De Souza, R.M.C.R.1    De Carvalho, F.A.T.2    Silva, F.C.D.3
  • 43
    • 62349117695 scopus 로고    scopus 로고
    • Partitional clustering algorithms for symbolic interval data based on single adaptive distances
    • De Carvalho FAT, Lechevallier Y. Partitional clustering algorithms for symbolic interval data based on single adaptive distances. Pattern Recogn 2009, 42:1223-1236.
    • (2009) Pattern Recogn , vol.42 , pp. 1223-1236
    • De Carvalho, F.A.T.1    Lechevallier, Y.2
  • 44
    • 77957887314 scopus 로고    scopus 로고
    • Fuzzy k-means clustering algorithms for interval-valued data based on adaptive quadratic distances
    • De Carvalho FAT, Tenorio CP. Fuzzy k-means clustering algorithms for interval-valued data based on adaptive quadratic distances. Fuzzy Sets Syst 2010, 161:2978-2999.
    • (2010) Fuzzy Sets Syst , vol.161 , pp. 2978-2999
    • De Carvalho, F.A.T.1    Tenorio, C.P.2
  • 45
    • 77952710071 scopus 로고    scopus 로고
    • Comparing histogram data using a Mahalanobis-Wasserstein distance
    • Brito P, eds. Berlin/Heidelberg: Springer
    • Verde R, Irpino A. Comparing histogram data using a Mahalanobis-Wasserstein distance. In: Brito P, ed. Proceedings of the COMPSTAT'2008. Berlin/Heidelberg: Springer; 2008, 77-89.
    • (2008) Proceedings of the COMPSTAT'2008 , pp. 77-89
    • Verde, R.1    Irpino, A.2
  • 46
    • 84906504617 scopus 로고    scopus 로고
    • Clustering of symbolic objects described by multi-valued and modal variables
    • Banks D, McMorris F, Arabie P, Gaul W, eds. Berlin/Heidelberg: Springer
    • Hardy A, Lallemand P. Clustering of symbolic objects described by multi-valued and modal variables. In: Banks D, McMorris F, Arabie P, Gaul W, eds. Classification, Clustering, and Data Mining Applications. Berlin/Heidelberg: Springer; 2004, 325-332.
    • (2004) Classification, Clustering, and Data Mining Applications , pp. 325-332
    • Hardy, A.1    Lallemand, P.2
  • 47
    • 79953040750 scopus 로고    scopus 로고
    • Clustering large data sets described with discrete distributions and its application on TIMSS data set
    • Korenjak-Cerne S, Batagelj V, Japelj Pavešic B. Clustering large data sets described with discrete distributions and its application on TIMSS data set. Stat Anal Data Min 2011, 4:199-215.
    • (2011) Stat Anal Data Min , vol.4 , pp. 199-215
    • Korenjak-Cerne, S.1    Batagelj, V.2    Japelj Pavešic, B.3
  • 48
    • 58949098840 scopus 로고    scopus 로고
    • A New Wasserstein based distance for the hierarchical clustering of histogram symbolic data
    • Batagelj V, Bock H-H, Ferligoj A, Žiberna A, eds. Berlin/Heidelberg: Springer
    • Irpino A, Verde R. A New Wasserstein based distance for the hierarchical clustering of histogram symbolic data. In: Batagelj V, Bock H-H, Ferligoj A, Žiberna A, eds. Proceedings of the IFCS 2006. Berlin/Heidelberg: Springer; 2006, 185-192.
    • (2006) Proceedings of the IFCS 2006 , pp. 185-192
    • Irpino, A.1    Verde, R.2
  • 49
    • 21844502976 scopus 로고
    • Symbolic objects: order structure and pyramidal clustering
    • Brito P. Symbolic objects: order structure and pyramidal clustering. Ann Oper Res 1995, 55:277-297.
    • (1995) Ann Oper Res , vol.55 , pp. 277-297
    • Brito, P.1
  • 50
    • 79953043366 scopus 로고    scopus 로고
    • Symbolic clustering of constrained probabilistic data
    • Opitz O, Schwaiger M, eds. Berlin/Heidelberg: Springer
    • Brito P, De Carvalho FAT. Symbolic clustering of constrained probabilistic data. In: Opitz O, Schwaiger M, eds. Exploratory Data Analysis in Empirical Research. Berlin/Heidelberg: Springer; 2002, 12-21.
    • (2002) Exploratory Data Analysis in Empirical Research , pp. 12-21
    • Brito, P.1    De Carvalho, F.A.T.2
  • 51
    • 84877287609 scopus 로고    scopus 로고
    • Classification conceptuelle avec généralisation par intervalles [Conceptual clustering with generalization by intervals]
    • Brito P, Polaillon G. Classification conceptuelle avec généralisation par intervalles [Conceptual clustering with generalization by intervals]. Revue des Nouvelles Technologies de l'Information 2012, E.23:35-40.
    • (2012) Revue des Nouvelles Technologies de l'Information , vol.23 E , pp. 35-40
    • Brito, P.1    Polaillon, G.2
  • 52
    • 0032154982 scopus 로고    scopus 로고
    • A monothetic clustering method
    • Chavent M. A monothetic clustering method. Pattern Recogn Lett 1998, 19:989-996.
    • (1998) Pattern Recogn Lett , vol.19 , pp. 989-996
    • Chavent, M.1
  • 53
    • 35148846471 scopus 로고    scopus 로고
    • DIVCLUS-T: a monothetic divisive hierarchical clustering method
    • Chavent M, Lechevallier Y, Briant O. DIVCLUS-T: a monothetic divisive hierarchical clustering method. Comput Stat Data Anal 2007, 52:687-701.
    • (2007) Comput Stat Data Anal , vol.52 , pp. 687-701
    • Chavent, M.1    Lechevallier, Y.2    Briant, O.3
  • 55
    • 84906519117 scopus 로고    scopus 로고
    • Symbolic clustering based on quantile representation
    • Lechevallier Y, Saporta G, eds. Heidelberg: Physica Verlag
    • Brito P, Ichino M. Symbolic clustering based on quantile representation. In: Lechevallier Y, Saporta G, eds. Proceedings of the COMPSTAT 2010. Heidelberg: Physica Verlag; 2010.
    • (2010) Proceedings of the COMPSTAT 2010
    • Brito, P.1    Ichino, M.2
  • 56
    • 84906510329 scopus 로고    scopus 로고
    • Clustering symbolic data based on quantile representation
    • Brito P, Noirhomme-Fraiture M, eds. Belgium: Namur
    • Brito P, Ichino M. Clustering symbolic data based on quantile representation. In: Brito P, Noirhomme-Fraiture M, eds. Proceedings of the Workshop in Symbolic Data Analysis. Belgium: Namur; 2011.
    • (2011) Proceedings of the Workshop in Symbolic Data Analysis
    • Brito, P.1    Ichino, M.2
  • 57
    • 75449088345 scopus 로고    scopus 로고
    • Clustering methods and Kohonen maps for symbolic data
    • Bock H-H. Clustering methods and Kohonen maps for symbolic data. J Jpn Soc Comput Stat 2002, 15:217-229.
    • (2002) J Jpn Soc Comput Stat , vol.15 , pp. 217-229
    • Bock, H.-H.1
  • 58
    • 79953063674 scopus 로고    scopus 로고
    • Visualizing symbolic data by Kohonen maps
    • Diday E, Noirhomme-Fraiture M, eds. Chichester, UK: John Wiley & Sons
    • Bock H-H. Visualizing symbolic data by Kohonen maps. In: Diday E, Noirhomme-Fraiture M, eds. Symbolic Data Analysis and the SODAS Software. Chichester, UK: John Wiley & Sons; 2008, 205-234.
    • (2008) Symbolic Data Analysis and the SODAS Software , pp. 205-234
    • Bock, H.-H.1
  • 65
    • 33750190295 scopus 로고    scopus 로고
    • Linear discriminant analysis for interval data
    • Duarte Silva AP, Brito P. Linear discriminant analysis for interval data. Comput Stat 2006, 21:289-308.
    • (2006) Comput Stat , vol.21 , pp. 289-308
    • Duarte Silva, A.P.1    Brito, P.2
  • 66
    • 84906500296 scopus 로고    scopus 로고
    • Discriminant analysis of interval data: parametric versus distance-based approaches
    • Under Revision.
    • Duarte Silva AP, Brito P. Discriminant analysis of interval data: parametric versus distance-based approaches. Under Revision.
    • Duarte Silva, A.P.1    Brito, P.2
  • 69
    • 84972914506 scopus 로고
    • Discriminant analysis of multi-dimensional interval data and its application to chemical sensing
    • Ishibuchi H, Tanaka H, Noriko Fukuoka N. Discriminant analysis of multi-dimensional interval data and its application to chemical sensing. Int J Gen Syst 1990, 16:311-329.
    • (1990) Int J Gen Syst , vol.16 , pp. 311-329
    • Ishibuchi, H.1    Tanaka, H.2    Noriko Fukuoka, N.3
  • 70
    • 34548127618 scopus 로고    scopus 로고
    • Discriminant analysis of interval data using Monte Carlo method in assessment of overlap
    • Jahanshahlooa GR, Lotfib FH, Balfc FR, Rezaid HZ. Discriminant analysis of interval data using Monte Carlo method in assessment of overlap. Appl Math Comput 2007, 191:521-532.
    • (2007) Appl Math Comput , vol.191 , pp. 521-532
    • Jahanshahlooa, G.R.1    Lotfib, F.H.2    Balfc, F.R.3    Rezaid, H.Z.4
  • 74
    • 79953041697 scopus 로고    scopus 로고
    • Factorial discriminant analysis
    • Diday E, Noirhomme-Fraiture M, eds. Chichester, UK: John Wiley & Sons
    • Lauro NC, Verde R, Irpino A. Factorial discriminant analysis. In: Diday E, Noirhomme-Fraiture M, eds. Symbolic Data Analysis and the Sodas Software. Chichester, UK: John Wiley & Sons; 2008, 341-358.
    • (2008) Symbolic Data Analysis and the Sodas Software , pp. 341-358
    • Lauro, N.C.1    Verde, R.2    Irpino, A.3
  • 79
    • 0029000116 scopus 로고
    • Neural expert systems
    • Síma J. Neural expert systems. Neural Netw 1995, 8:261-271.
    • (1995) Neural Netw , vol.8 , pp. 261-271
    • Síma, J.1
  • 80
    • 0029727302 scopus 로고    scopus 로고
    • Handling uncertainty in neural networks: an interval approach
    • . Washington DC: IEEE Computer Society Press
    • Simoff SJ. Handling uncertainty in neural networks: an interval approach. In: Proceedings of the IEEE International Conference on Neural Networks. Washington DC: IEEE Computer Society Press; 1996, 606-610.
    • (1996) Proceedings of the IEEE International Conference on Neural Networks , pp. 606-610
    • Simoff, S.J.1
  • 82
    • 11244327915 scopus 로고    scopus 로고
    • Multilayer perceptron on interval data
    • Jajuga K, Sokolowski A, Bock H-H, eds. Berlin/Heidelberg: Springer
    • Rossi F, Conan Guez B. Multilayer perceptron on interval data. In: Jajuga K, Sokolowski A, Bock H-H, eds. Classification, Clustering and Data Analysis. Berlin/Heidelberg: Springer; 2002, 427-434.
    • (2002) Classification, Clustering and Data Analysis , pp. 427-434
    • Rossi, F.1    Conan Guez, B.2
  • 84
    • 0039957466 scopus 로고    scopus 로고
    • Extensions de l'Analyse en Composantes Principales à des données de type intervalle
    • Cazes P, Chouakria A, Diday E, Schektman Y. Extensions de l'Analyse en Composantes Principales à des données de type intervalle. Revue de Statistique Appliquée 1997, 24:5-24.
    • (1997) Revue de Statistique Appliquée , vol.24 , pp. 5-24
    • Cazes, P.1    Chouakria, A.2    Diday, E.3    Schektman, Y.4
  • 85
    • 84988620563 scopus 로고    scopus 로고
    • Principal Component Analysis for non-precise data
    • Vichi M, Monari P, Mignani S, Montanari A, eds. Berlin/Heidelberg: Springer
    • Lauro C, Palumbo P. Principal Component Analysis for non-precise data. In: Vichi M, Monari P, Mignani S, Montanari A, eds. New Developments in Classification and Data Analysis. Berlin/Heidelberg: Springer; 2005, 173-184.
    • (2005) New Developments in Classification and Data Analysis , pp. 173-184
    • Lauro, C.1    Palumbo, P.2
  • 87
    • 34547464177 scopus 로고    scopus 로고
    • Principal components of sample estimates: an approach through symbolic data analysis
    • Zuccolotto P. Principal components of sample estimates: an approach through symbolic data analysis. Stat Meth Appli 2007, 16:173-192.
    • (2007) Stat Meth Appli , vol.16 , pp. 173-192
    • Zuccolotto, P.1
  • 90
    • 84862182458 scopus 로고    scopus 로고
    • Adaptation of interval PCA to symbolic histogram variables
    • Makosso-Kallyth S, Diday E. Adaptation of interval PCA to symbolic histogram variables. Adv Data Anal Classif 2012, 6:147-159.
    • (2012) Adv Data Anal Classif , vol.6 , pp. 147-159
    • Makosso-Kallyth, S.1    Diday, E.2
  • 91
    • 79953039308 scopus 로고    scopus 로고
    • Generalized canonical analysis
    • Diday E, Noirhomme-Fraiture M, eds. Chichester, UK: John Wiley & Sons
    • Lauro C, Verde R, Irpino A. Generalized canonical analysis. In: Diday E, Noirhomme-Fraiture M, eds. Symbolic Data Analysis and the Sodas Software. Chichester, UK: John Wiley & Sons; 2008, 313-330.
    • (2008) Symbolic Data Analysis and the Sodas Software , pp. 313-330
    • Lauro, C.1    Verde, R.2    Irpino, A.3
  • 93
    • 35548979016 scopus 로고    scopus 로고
    • Centre and range method for fitting a linear regression model to symbolic interval data
    • Neto EAL, De Carvalho FAT. Centre and range method for fitting a linear regression model to symbolic interval data. Comput Stat Data Anal 2008, 52:1500-1515.
    • (2008) Comput Stat Data Anal , vol.52 , pp. 1500-1515
    • Neto, E.A.L.1    De Carvalho, F.A.T.2
  • 94
    • 70350751560 scopus 로고    scopus 로고
    • Constrained linear regression models for symbolic interval-valued variables
    • Neto EAL, De Carvalho FAT. Constrained linear regression models for symbolic interval-valued variables. Comput Stat Data Anal 2010, 54:333-347.
    • (2010) Comput Stat Data Anal , vol.54 , pp. 333-347
    • Neto, E.A.L.1    De Carvalho, F.A.T.2
  • 96
    • 84869183326 scopus 로고    scopus 로고
    • Ordinary least squares for histogram data based on Wasserstein distance
    • Lechevallier Y, Saporta G, eds. Heidelberg: Physica Verlag
    • Verde R, Irpino A. Ordinary least squares for histogram data based on Wasserstein distance. In: Lechevallier Y, Saporta G, eds. Proceedings of the COMPSTAT'2010. Heidelberg: Physica Verlag; 2010, 581-589.
    • (2010) Proceedings of the COMPSTAT'2010 , pp. 581-589
    • Verde, R.1    Irpino, A.2
  • 97
    • 80051802764 scopus 로고    scopus 로고
    • Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation
    • Noirhomme-Fraiture M, Venturini G, eds. Toulouse, France: Cépaduès-Éditions
    • Irpino A, Romano E. Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation. In: Noirhomme-Fraiture M, Venturini G, eds. EGC, RNTI-E-9 of Revue des Nouvelles Technologies de l'Information. Toulouse, France: Cépaduès-Éditions; 2007, 99-110.
    • (2007) EGC, RNTI-E-9 of Revue des Nouvelles Technologies de l'Information , pp. 99-110
    • Irpino, A.1    Romano, E.2
  • 102
    • 72249094153 scopus 로고    scopus 로고
    • Electric power demand forecasting using interval time series: a comparison between VAR and iMLP
    • García-Ascanio C, Maté C. Electric power demand forecasting using interval time series: a comparison between VAR and iMLP. Energy Policy 2009, 38:715-725.
    • (2009) Energy Policy , vol.38 , pp. 715-725
    • García-Ascanio, C.1    Maté, C.2
  • 103
    • 72249094866 scopus 로고    scopus 로고
    • Forecasting with interval and histogram data. Some financial applications
    • Ullah A, Giles D, Balakrishnan N, Schucany W, Schilling E, eds. New York: Chapman and Hall/CRC
    • Arroyo J, González-Rivera G, Maté C. Forecasting with interval and histogram data. Some financial applications. In: Ullah A, Giles D, Balakrishnan N, Schucany W, Schilling E, eds. Handbook of Empirical Economics and Finance. New York: Chapman and Hall/CRC; 2010.
    • (2010) Handbook of Empirical Economics and Finance
    • Arroyo, J.1    González-Rivera, G.2    Maté, C.3
  • 104
    • 84155189886 scopus 로고    scopus 로고
    • Time series modeling of histogram-valued data: the daily histogram time series of S&P500 intradaily returns
    • González-Rivera G, Arroyo J. Time series modeling of histogram-valued data: the daily histogram time series of S&P500 intradaily returns. Int J Forecast 2012, 28:20-33.
    • (2012) Int J Forecast , vol.28 , pp. 20-33
    • González-Rivera, G.1    Arroyo, J.2
  • 105
    • 55649087794 scopus 로고    scopus 로고
    • Interval time series analysis with an application to the Sterling-Dollar exchange rate
    • Han A, Hong Y, Lai K, Wang S. Interval time series analysis with an application to the Sterling-Dollar exchange rate. J Syst Sci Complex 2008, 21:558-573.
    • (2008) J Syst Sci Complex , vol.21 , pp. 558-573
    • Han, A.1    Hong, Y.2    Lai, K.3    Wang, S.4
  • 106
    • 84942057650 scopus 로고    scopus 로고
    • Modelling interval time series with Space-time processes
    • press. doi: 10.1080/03610926.2013.782200.
    • Teles P, Brito P. Modelling interval time series with Space-time processes. Commun Stat Theor Meth (In press). doi: 10.1080/03610926.2013.782200.
    • Commun Stat Theor Meth
    • Teles, P.1    Brito, P.2
  • 107
    • 58949100905 scopus 로고    scopus 로고
    • Forecasting histogram time series with k-nearest neighbours methods
    • Arroyo J, Maté C. Forecasting histogram time series with k-nearest neighbours methods. Int J Forecast 2009, 25:182-207.
    • (2009) Int J Forecast , vol.25 , pp. 182-207
    • Arroyo, J.1    Maté, C.2
  • 108
    • 0011737402 scopus 로고    scopus 로고
    • Interpretation and reduction of Galois lattices of complex data
    • Rizzi A, Vichi M, Bock H-H, eds. Berlin/Heidelberg: Springer
    • Polaillon G. Interpretation and reduction of Galois lattices of complex data. In: Rizzi A, Vichi M, Bock H-H, eds. Advances in Data Science and Classification. Berlin/Heidelberg: Springer; 1998, 433-440.
    • (1998) Advances in Data Science and Classification , pp. 433-440
    • Polaillon, G.1
  • 110
    • 77956025932 scopus 로고    scopus 로고
    • Structuring probabilistic data by Galois lattices
    • Brito P, Polaillon G. Structuring probabilistic data by Galois lattices. Math Social Sci 2005, 169:77-104.
    • (2005) Math Social Sci , vol.169 , pp. 77-104
    • Brito, P.1    Polaillon, G.2
  • 112
    • 0041743064 scopus 로고    scopus 로고
    • From the statistics of data to the statistics of knowledge: Symbolic Data Analysis
    • Billard L, Diday E. From the statistics of data to the statistics of knowledge: Symbolic Data Analysis. J Am Stat Assoc 2003, 98:470-487.
    • (2003) J Am Stat Assoc , vol.98 , pp. 470-487
    • Billard, L.1    Diday, E.2
  • 115
    • 79953031799 scopus 로고    scopus 로고
    • On the analysis of symbolic data
    • Brito P, Bertrand P, Cucumel G, De Carvalho FAT, eds. Berlin/Heidelberg: Springer
    • Brito P. On the analysis of symbolic data. In: Brito P, Bertrand P, Cucumel G, De Carvalho FAT, eds. Selected Contributions in Data Analysis and Classification. Berlin/Heidelberg: Springer; 2007, 13-22.
    • (2007) Selected Contributions in Data Analysis and Classification , pp. 13-22
    • Brito, P.1
  • 116
    • 0043135897 scopus 로고
    • The symbolic approach in clustering and related methods of data analysis: the basic choices
    • Bock H-H, eds. Amsterdam: North Holland
    • Diday E. The symbolic approach in clustering and related methods of data analysis: the basic choices. In: Bock H-H, ed. Classification and Related Methods of Data Analysis, Proceedings of the IFCS'87. Amsterdam: North Holland; 1988, 673-684.
    • (1988) Classification and Related Methods of Data Analysis, Proceedings of the IFCS'87 , pp. 673-684
    • Diday, E.1
  • 117
    • 79953031194 scopus 로고
    • Introduction à l'analyse des données symboliques
    • Diday E. Introduction à l'analyse des données symboliques. Revue Recherche Opérationnelle 1989, 23:193-236.
    • (1989) Revue Recherche Opérationnelle , vol.23 , pp. 193-236
    • Diday, E.1
  • 118
    • 84948752989 scopus 로고    scopus 로고
    • Diday E, Noirhomme-Fraiture M, eds. Chichester, UK: John Wiley & Sons
    • Diday E, Noirhomme-Fraiture M, eds. Symbolic Data Analysis and the Sodas Software. Chichester, UK: John Wiley & Sons; 2008.
    • (2008) Symbolic Data Analysis and the Sodas Software


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.