메뉴 건너뛰기




Volumn , Issue , 2011, Pages 371-380

Interval-valued regression and classification models in the framework of machine learning

Author keywords

Belief functions; Classification; Intervalvalued observations; Machine learning; P box; Regression; Risk functional; Support vector machines

Indexed keywords

BELIEF FUNCTION; CLASSIFICATION PARAMETERS; INTERVAL-VALUED; OPTIMISATION PROBLEMS; P-BOX; REGRESSION; REGRESSION AND CLASSIFICATION MODELS; SUPPORT VECTOR MACHINE METHOD;

EID: 84867352053     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (36)
  • 1
    • 38049130667 scopus 로고    scopus 로고
    • Constructing predictive belief functions from continuous sample data using confidence bands
    • A. Arequi, T. Denoeux. Constructing predictive belief functions from continuous sample data using confidence bands. ISIPTA'07 8, pp 11-20, 2007.
    • (2007) ISIPTA'07 , vol.8 , pp. 11-20
    • Arequi, A.1    Denoeux, T.2
  • 4
    • 84866144379 scopus 로고    scopus 로고
    • Classification problems with imprecise data through separating hyperplanes
    • Vrije Universiteit Brussel
    • E. Carrizosa, J. Gordillo, F. Plastria. Classification problems with imprecise data through separating hyperplanes. Technical Report MOSI/33, Vrije Universiteit Brussel, 2007.
    • (2007) Technical Report MOSI/33
    • Carrizosa, E.1    Gordillo, J.2    Plastria, F.3
  • 5
    • 4644341667 scopus 로고    scopus 로고
    • Updating beliefs with incomplete observations
    • G. de Cooman, M. Zaffalon. Updating beliefs with incomplete observations. Artificial Intelligence, 159:75- 125, 2004.
    • (2004) Artificial Intelligence , vol.159 , pp. 75-125
    • De Cooman, G.1    Zaffalon, M.2
  • 6
    • 0000516376 scopus 로고
    • Upper and lower probabilities induced by a multi-valued mapping
    • A.P. Dempster. Upper and lower probabilities induced by a multi-valued mapping. Annals of Mathematical Statistics, 38:325-339, 1967.
    • (1967) Annals of Mathematical Statistics , vol.38 , pp. 325-339
    • Dempster, A.P.1
  • 9
    • 67649968190 scopus 로고    scopus 로고
    • Interval regression analysis using support vector networks
    • P.Y. Hao. Interval regression analysis using support vector networks. Fuzzy Sets and Systems, 60:2466- 2485, 2009.
    • (2009) Fuzzy Sets and Systems , vol.60 , pp. 2466-2485
    • Hao, P.Y.1
  • 11
    • 84972914506 scopus 로고
    • Discriminant analysis of multi-dimensional interval data and its application to chemical sensing
    • H. Ishibuchi, H. Tanaka, N. Fukuoka. Discriminant analysis of multi-dimensional interval data and its application to chemical sensing. International Journal of General Systems, 16:311-329, 1990.
    • (1990) International Journal of General Systems , vol.16 , pp. 311-329
    • Ishibuchi, H.1    Tanaka, H.2    Fukuoka, N.3
  • 13
    • 16344382080 scopus 로고    scopus 로고
    • Utilizing belief functions for the estimation of future climate change
    • E. Kriegler, H. Held. Utilizing belief functions for the estimation of future climate change. International Journal of Approximate Reasoning, 39:185-209, 2005.
    • (2005) International Journal of Approximate Reasoning , vol.39 , pp. 185-209
    • Kriegler, E.1    Held, H.2
  • 14
    • 35548979016 scopus 로고    scopus 로고
    • Centre and range method to fitting a linear regression model on symbolic interval data
    • E.A. Lima Neto, F.A.T. de Carvalho. Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis, 52:1500-1515, 2008.
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 1500-1515
    • Lima Neto, E.A.1    De Carvalho, F.A.T.2
  • 15
    • 0043021179 scopus 로고
    • On decision making using belief functions
    • R.Y. Yager, M. Fedrizzi, J. Kacprzyk (Eds), Wiley, New York
    • H.T. Nguyen, E.A. Walker. On decision making using belief functions. In: R.Y. Yager, M. Fedrizzi, J. Kacprzyk (Eds), Advances in the Dempster-Shafer Theory of Evidence. Wiley, New York, pp 311-330, 1994.
    • (1994) Advances in the Dempster-Shafer Theory of Evidence. , pp. 311-330
    • Nguyen, H.T.1    Walker, E.A.2
  • 16
    • 0042700671 scopus 로고    scopus 로고
    • Interval discriminant analysis: An efficient method to integrate errors in supervised pattern recognition
    • P. Nivlet, F. Fournier, J.J. Royer. Interval discriminant analysis: An efficient method to integrate errors in supervised pattern recognition. ISIPTA'01, pp 284-292, 2001.
    • (2001) ISIPTA'01 , pp. 284-292
    • Nivlet, P.1    Fournier, F.2    Royer, J.J.3
  • 18
    • 0242490050 scopus 로고    scopus 로고
    • Nonparametric regression analysis of uncertain and imprecise data using belief functions
    • S. Petit-Renaud, T. Denoeux. Nonparametric regression analysis of uncertain and imprecise data using belief functions. International Journal of Approximate Reasoning, 35:1-28, 2004.
    • (2004) International Journal of Approximate Reasoning , vol.35 , pp. 1-28
    • Petit-Renaud, S.1    Denoeux, T.2
  • 19
    • 85045326172 scopus 로고    scopus 로고
    • Imprecise probability models for inference in exponential families
    • E. Quaeghebeur, G. de Cooman. Imprecise probability models for inference in exponential families. ISIPTA'05, pp 287-296, 2005.
    • (2005) ISIPTA'05 , pp. 287-296
    • Quaeghebeur, E.1    De Cooman, G.2
  • 23
    • 33750190295 scopus 로고    scopus 로고
    • Linear discriminant analysis for interval data
    • A. Silva, P. Brito. Linear discriminant analysis for interval data. Computational Statistics, 21:289-308, 2006.
    • (2006) Computational Statistics , vol.21 , pp. 289-308
    • Silva, A.1    Brito, P.2
  • 26
    • 0032205733 scopus 로고    scopus 로고
    • Interval regression analysis by quadratic programming approach
    • H. Tanaka, H. Lee. Interval regression analysis by quadratic programming approach. IEEE Transactions on Fuzzy Systems, 6:473-481, 1998.
    • (1998) IEEE Transactions on Fuzzy Systems , vol.6 , pp. 473-481
    • Tanaka, H.1    Lee, H.2
  • 29
    • 33846158925 scopus 로고    scopus 로고
    • Efficient algorithms for decision making under partial prior information and general ambiguity attitudes
    • L.V. Utkin, T. Augustin. Efficient algorithms for decision making under partial prior information and general ambiguity attitudes. ISIPTA'05, pp 349-358, 2005.
    • (2005) ISIPTA'05 , pp. 349-358
    • Utkin, L.V.1    Augustin, T.2
  • 31
    • 84883246708 scopus 로고    scopus 로고
    • Computing expectations with p-boxes: Two views of the same problem
    • L.V. Utkin, S. Destercke. Computing expectations with p-boxes: two views of the same problem. ISIPTA'07, pp 435-444, 2007.
    • (2007) ISIPTA'07 , pp. 435-444
    • Utkin, L.V.1    Destercke, S.2
  • 35
    • 84883246548 scopus 로고    scopus 로고
    • Inferences from multinomial data: Learning about a bag of marbles
    • With discussion, Series B
    • P. Walley. Inferences from multinomial data: Learning about a bag of marbles. (With discussion) Journal of the Royal Statistical Society, Series B, 58:3-57, 1996.
    • (1996) Journal of the Royal Statistical Society , vol.58 , pp. 3-57
    • Walley, P.1
  • 36
    • 84883216599 scopus 로고    scopus 로고
    • Linear regression analysis under sets of conjugate priors
    • G. Walter, T. Augustin, A. Peters. Linear regression analysis under sets of conjugate priors. ISIPTA'07, pp 445-455, 2007.
    • (2007) ISIPTA'07 , pp. 445-455
    • Walter, G.1    Augustin, T.2    Peters, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.