메뉴 건너뛰기




Volumn 27, Issue 3, 2006, Pages 167-179

Adaptive Hausdorff distances and dynamic clustering of symbolic interval data

Author keywords

Adaptive distances; Dynamic clustering; Hausdorff distance; Interval data; Symbolic data analysis

Indexed keywords

ALGORITHMS; ITERATIVE METHODS; MONTE CARLO METHODS; OPTIMIZATION; PROBABILITY; VECTORS;

EID: 28044438528     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2005.08.014     Document Type: Article
Times cited : (175)

References (33)
  • 1
    • 0041743064 scopus 로고    scopus 로고
    • From the statistics of data to the statistics of knowledge: Symbolic data analysis
    • L. Billard, and E. Diday From the statistics of data to the statistics of knowledge: Symbolic data analysis J. Amer. Statist. Assoc. 98 462 2003 470 487
    • (2003) J. Amer. Statist. Assoc. , vol.98 , Issue.462 , pp. 470-487
    • Billard, L.1    Diday, E.2
  • 2
    • 0030636546 scopus 로고    scopus 로고
    • Mercury in the food web: Accumulation and transfer mechanisms
    • A. Sigrel H. Sigrel M. Dekker New York
    • A. Bobou, and F. Ribeyre Mercury in the food web: Accumulation and transfer mechanisms A. Sigrel H. Sigrel Metal Ions in Biological Systems 1998 M. Dekker New York 289 319
    • (1998) Metal Ions in Biological Systems , pp. 289-319
    • Bobou, A.1    Ribeyre, F.2
  • 3
    • 0004743862 scopus 로고
    • Classification and clustering: Problems for the future
    • Diday Springer-Verlag*et al.
    • H.H. Bock Classification and clustering: Problems for the future Diday New Approaches in Classification and Data Analysis 1993 Springer-Verlag 3 24
    • (1993) New Approaches in Classification and Data Analysis , pp. 3-24
    • Bock, H.H.1
  • 4
    • 47149103988 scopus 로고    scopus 로고
    • Clustering algorithms and Kohonen maps for symbolic data
    • Osaka
    • H.-H. Bock Clustering algorithms and Kohonen maps for symbolic data Proc. ICNCB, Osaka, 203-215 J. Jpn. Soc. Comp. Statist. 15 2002 1 13
    • Proc. ICNCB , pp. 203-215
    • Bock, H.-H.1
  • 5
    • 28044469189 scopus 로고    scopus 로고
    • H.-H. Bock Clustering algorithms and Kohonen maps for symbolic data Proc. ICNCB, Osaka, 203-215 J. Jpn. Soc. Comp. Statist. 15 2002 1 13
    • (2002) J. Jpn. Soc. Comp. Statist. , vol.15 , pp. 1-13
  • 7
    • 0012393548 scopus 로고    scopus 로고
    • Dynamical clustering algorithm of interval data: Optimization of an adequacy criterion based on Hausdorff distance
    • Sokolowsky H.H. Bock Springer-Verlag Heidelberg
    • M. Chavent, and Y. Lechevallier Dynamical clustering algorithm of interval data: Optimization of an adequacy criterion based on Hausdorff distance Sokolowsky H.H. Bock Classification, Clustering and Data Analysis 2002 Springer-Verlag Heidelberg 53 59
    • (2002) Classification, Clustering and Data Analysis , pp. 53-59
    • Chavent, M.1    Lechevallier, Y.2
  • 8
    • 0042241641 scopus 로고
    • Proximity coefficients between boolean symbolic objects
    • E. Diday Springer-Verlag Heildeberg*et al.
    • F.A.T. De Carvalho Proximity coefficients between boolean symbolic objects E. Diday New Approaches in Classification and Data Analysis 1994 Springer-Verlag Heildeberg 387 394
    • (1994) New Approaches in Classification and Data Analysis , pp. 387-394
    • De Carvalho, F.A.T.1
  • 9
    • 0343097154 scopus 로고    scopus 로고
    • Statistical proximity functions of boolean symbolic objects based on histograms
    • A. Rizzi Springer-Verlag Heildelberg*et al.
    • F.A.T. De Carvalho Statistical proximity functions of boolean symbolic objects based on histograms A. Rizzi New Advances in Data Science and Classification 1998 Springer-Verlag Heildelberg 391 396
    • (1998) New Advances in Data Science and Classification , pp. 391-396
    • De Carvalho, F.A.T.1
  • 11
    • 0002579892 scopus 로고
    • La méthode des Nuées dynamiques
    • E. Diday La méthode des Nuées dynamiques Rev. Statist. Appl. 19 2 1971 19 34
    • (1971) Rev. Statist. Appl. , vol.19 , Issue.2 , pp. 19-34
    • Diday, E.1
  • 12
    • 0043135897 scopus 로고
    • The symbolic approach in clustering and related methods of data analysis
    • H.H. Bock North Holland Amsterdam
    • E. Diday The symbolic approach in clustering and related methods of data analysis H.H. Bock Classification Methods of Data Analysis 1988 North Holland Amsterdam 673 684
    • (1988) Classification Methods of Data Analysis , pp. 673-684
    • Diday, E.1
  • 14
    • 26944464507 scopus 로고
    • Classification avec distances adaptatives
    • E. Diday, and G. Govaert Classification avec distances adaptatives C. R. Acad. Sci. Paris 278 série A 1974 993
    • (1974) C. R. Acad. Sci. Paris , vol.278 , pp. 993
    • Diday, E.1    Govaert, G.2
  • 15
    • 0017678272 scopus 로고
    • Classification automatique avec distances adaptatives
    • E. Diday, and G. Govaert Classification automatique avec distances adaptatives RAIRO Inform. Computer Sci. 11 4 1977 329 349
    • (1977) RAIRO Inform. Computer Sci. , vol.11 , Issue.4 , pp. 329-349
    • Diday, E.1    Govaert, G.2
  • 16
    • 0019111672 scopus 로고
    • Clustering analysis
    • K.S. Fu Springer-Verlag Heidelberg
    • E. Diday, and J.J. Simon Clustering analysis K.S. Fu Digital Pattern Recognition 1976 Springer-Verlag Heidelberg 47 94
    • (1976) Digital Pattern Recognition , pp. 47-94
    • Diday, E.1    Simon, J.J.2
  • 19
    • 0004241258 scopus 로고    scopus 로고
    • Chapman and Hall/CRC Boca Raton, FL
    • A.D. Gordon Classification 1999 Chapman and Hall/CRC Boca Raton, FL
    • (1999) Classification
    • Gordon, A.D.1
  • 20
    • 0346760234 scopus 로고    scopus 로고
    • An iterative relocation algorithm for classifying symbolic data
    • W. Gaul Springer-Verlag Berlin*et al.
    • A.D. Gordon An iterative relocation algorithm for classifying symbolic data W. Gaul Data Analysis: Scientific Modeling and Practical Application 2000 Springer-Verlag Berlin 17 23
    • (2000) Data Analysis: Scientific Modeling and Practical Application , pp. 17-23
    • Gordon, A.D.1
  • 22
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • K.C. Gowda, and E. Diday Symbolic clustering using a new dissimilarity measure Pattern Recognition 24 6 1991 567 578
    • (1991) Pattern Recognition , vol.24 , Issue.6 , pp. 567-578
    • Gowda, K.C.1    Diday, E.2
  • 23
    • 0026831106 scopus 로고
    • Symbolic clustering using a new similarity measure
    • K.C. Gowda, and E. Diday Symbolic clustering using a new similarity measure IEEE Trans. Systems Man Cybernet. 22 1992 368 378
    • (1992) IEEE Trans. Systems Man Cybernet. , vol.22 , pp. 368-378
    • Gowda, K.C.1    Diday, E.2
  • 26
    • 0028408227 scopus 로고
    • Generalized Minkowski metrics for mixed feature type data analysis
    • M. Ichino, and H. Yaguchi Generalized Minkowski metrics for mixed feature type data analysis IEEE Trans. Systems Man Cybernet. 24 4 1994 698 708
    • (1994) IEEE Trans. Systems Man Cybernet. , vol.24 , Issue.4 , pp. 698-708
    • Ichino, M.1    Yaguchi, H.2
  • 29
    • 28044456853 scopus 로고    scopus 로고
    • Visualization of large data sets: The Zoom Star solution
    • M. Noirhomme-Fraiture Visualization of large data sets: The Zoom Star solution Electron. J. Symbol. Data Anal. 0 2002 26 39
    • (2002) Electron. J. Symbol. Data Anal. , vol.0 , pp. 26-39
    • Noirhomme-Fraiture, M.1
  • 30
    • 0026153079 scopus 로고
    • Computing the minimum Hausdorff distance between two point sets on a line under translation
    • G. Rote Computing the minimum Hausdorff distance between two point sets on a line under translation Inform. Process. Lett. 38 1991 123 127
    • (1991) Inform. Process. Lett. , vol.38 , pp. 123-127
    • Rote, G.1
  • 31
    • 0346724786 scopus 로고    scopus 로고
    • Clustering of interval data based on city-block distances
    • R.M.C.R. Souza, and F.A.T. De Carvalho Clustering of interval data based on city-block distances Pattern Recognition Lett. 25 3 2004 353 365
    • (2004) Pattern Recognition Lett. , vol.25 , Issue.3 , pp. 353-365
    • Souza, R.M.C.R.1    De Carvalho, F.A.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.