메뉴 건너뛰기




Volumn 203, Issue , 2012, Pages 49-73

Self-organizing map for symbolic data

Author keywords

Dissimilarity measure; Fuzzy clustering; Self organizing map; Suppression concept; Symbolic data

Indexed keywords

COMPETITIVE LEARNING; DATA SETS; DISSIMILARITY MEASURES; LATERAL INTERACTIONS; LEARNING RULES; NOVEL STRUCTURES; NUMERIC DATA; REAL APPLICATIONS; REAL DATA SETS; SOM CLUSTERING; SUPPRESSION CONCEPT; SYMBOLIC DATA; TOPOLOGICAL STRUCTURE;

EID: 84862898429     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2012.04.006     Document Type: Article
Times cited : (20)

References (51)
  • 2
    • 0041743064 scopus 로고    scopus 로고
    • From the statistics of data to the statistics of knowledge: Symbolic data analysis
    • L. Billard, and E. Diday From the statistics of data to the statistics of knowledge: symbolic data analysis J. Am. Stat. Assoc. 98 2003 470 487
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 470-487
    • Billard, L.1    Diday, E.2
  • 3
    • 79953052235 scopus 로고    scopus 로고
    • Brief overview of symbolic data and analytic issues
    • L. Billard Brief overview of symbolic data and analytic issues Stat. Anal. Data Min. 4 2011 149 156
    • (2011) Stat. Anal. Data Min. , vol.4 , pp. 149-156
    • Billard, L.1
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • A Huge Collection of Artificial and Real-world Data Sets
    • C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases, A Huge Collection of Artificial and Real-world Data Sets, 1998. Available from: 〈 http://archive.ics.uci.edu/ml/datasets.html 〉.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 5
    • 79953063674 scopus 로고    scopus 로고
    • Visualizing symbolic data by Kohonen maps
    • E. Diday, M. Noihome-Fraiture, Wiley
    • H.H. Bock Visualizing symbolic data by Kohonen maps E. Diday, M. Noihome-Fraiture, Symbolic Data Analysis and the SODAS Software 2008 Wiley 205 234
    • (2008) Symbolic Data Analysis and the SODAS Software , pp. 205-234
    • Bock, H.H.1
  • 7
    • 0000736461 scopus 로고    scopus 로고
    • Convergence and ordering and ordering of Kohoens batch map
    • Y. Cheng Convergence and ordering and ordering of Kohoens batch map Neural Comput. 9 1997 1667 1676
    • (1997) Neural Comput. , vol.9 , pp. 1667-1676
    • Cheng, Y.1
  • 8
    • 70349246347 scopus 로고    scopus 로고
    • Multilayer SOM with tree-structured data for efficient document retrieval and plagiarism detection
    • T.W.S. Chow, and M.K.M. Rahman Multilayer SOM with tree-structured data for efficient document retrieval and plagiarism detection IEEE Trans. Neural Networks 20 2009 1385 1402
    • (2009) IEEE Trans. Neural Networks , vol.20 , pp. 1385-1402
    • Chow, T.W.S.1    Rahman, M.K.M.2
  • 9
    • 33746893766 scopus 로고    scopus 로고
    • Fast algorithm and implementation of dissimilarity self-organizing maps
    • B. Conan-Guez, F. Rossi, and A. El Golli Fast algorithm and implementation of dissimilarity self-organizing maps Neural Networks 19 2006 855 863
    • (2006) Neural Networks , vol.19 , pp. 855-863
    • Conan-Guez, B.1    Rossi, F.2    El Golli, A.3
  • 10
    • 75749148724 scopus 로고    scopus 로고
    • Application of symbolic data analysis for structural modification assessment
    • A. Cury, C. Crémona, and E. Diday Application of symbolic data analysis for structural modification assessment Eng. Struct. 32 2010 762 775
    • (2010) Eng. Struct. , vol.32 , pp. 762-775
    • Cury, A.1    Crémona, C.2    Diday, E.3
  • 11
    • 33845495645 scopus 로고    scopus 로고
    • Fuzzy c-means clustering methods for symbolic interval data
    • F.A.T. de Carvalho Fuzzy c-means clustering methods for symbolic interval data Pattern Recognition Lett. 28 2007 423 437
    • (2007) Pattern Recognition Lett. , vol.28 , pp. 423-437
    • De Carvalho, F.A.T.1
  • 12
    • 33750164227 scopus 로고    scopus 로고
    • Dynamic clustering methods for interval data based on L2 distance
    • F.A.T. de Carvalho, P. Brito, and H.H. Bock Dynamic clustering methods for interval data based on L2 distance Comput. Stat. 21 2006 231 250
    • (2006) Comput. Stat. , vol.21 , pp. 231-250
    • De Carvalho, F.A.T.1    Brito, P.2    Bock, H.H.3
  • 13
    • 75449087623 scopus 로고    scopus 로고
    • Unsupervised pattern recognition models for mixed feature-type symbolic data
    • F.A.T. de Carvalho, and R.M.C.R. de Souza Unsupervised pattern recognition models for mixed feature-type symbolic data Pattern Recognition Lett. 31 2010 430 443
    • (2010) Pattern Recognition Lett. , vol.31 , pp. 430-443
    • De Carvalho, F.A.T.1    De Souza, R.M.C.R.2
  • 15
    • 62349117695 scopus 로고    scopus 로고
    • Partitional clustering algorithms for symbolic interval data based on single adaptive distances
    • F.A.T. de Carvalho, and Y. Lechevallier Partitional clustering algorithms for symbolic interval data based on single adaptive distances Pattern Recognition 42 2009 1223 1236
    • (2009) Pattern Recognition , vol.42 , pp. 1223-1236
    • De Carvalho, F.A.T.1    Lechevallier, Y.2
  • 17
    • 77957887314 scopus 로고    scopus 로고
    • Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances
    • F.A.T. de Carvalho, and C.P. Tenório Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances Fuzzy Sets Syst. 161 2010 2978 2999
    • (2010) Fuzzy Sets Syst. , vol.161 , pp. 2978-2999
    • De Carvalho, F.A.T.1    Tenório, C.P.2
  • 21
    • 0037410688 scopus 로고    scopus 로고
    • Suppressed fuzzy c-means clustering algorithm
    • J.L. Fan, W.Z. Zhen, and W.X. Xie Suppressed fuzzy c-means clustering algorithm Pattern Recognition Lett. 24 2003 1607 1612
    • (2003) Pattern Recognition Lett. , vol.24 , pp. 1607-1612
    • Fan, J.L.1    Zhen, W.Z.2    Xie, W.X.3
  • 22
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • K.C. Gowda, and E. Diday Symbolic clustering using a new dissimilarity measure Pattern Recognition 24 1991 567 578
    • (1991) Pattern Recognition , vol.24 , pp. 567-578
    • Gowda, K.C.1    Diday, E.2
  • 23
    • 0026831106 scopus 로고
    • Symbolic clustering using a new similarity measure
    • K.C. Gowda, and E. Diday Symbolic clustering using a new similarity measure IEEE Trans. Syst. Man Cybern. 22 1992 368 378
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , pp. 368-378
    • Gowda, K.C.1    Diday, E.2
  • 24
    • 0017120827 scopus 로고
    • Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors
    • S. Grossberg Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors Biol. Cybern. 23 1976 121 134
    • (1976) Biol. Cybern. , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 25
    • 4644323250 scopus 로고    scopus 로고
    • Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns
    • D.S. Guru, and B.B. Kiranagi Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns Pattern Recognition 38 2005 151 256
    • (2005) Pattern Recognition , vol.38 , pp. 151-256
    • Guru, D.S.1    Kiranagi, B.B.2
  • 26
    • 2942618322 scopus 로고    scopus 로고
    • Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns
    • D.S. Guru, B.B. Kiranagi, and P. Nagabhushan Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns Pattern Recognition Lett. 25 2004 1203 1213
    • (2004) Pattern Recognition Lett. , vol.25 , pp. 1203-1213
    • Guru, D.S.1    Kiranagi, B.B.2    Nagabhushan, P.3
  • 27
    • 77953105198 scopus 로고    scopus 로고
    • Computing with words with the ontological self-organizing map
    • T.C. Havens, J.M. Keller, and M. Popescu Computing with words with the ontological self-organizing map IEEE Trans. Fuzzy Syst. 18 2010 473 485
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , pp. 473-485
    • Havens, T.C.1    Keller, J.M.2    Popescu, M.3
  • 29
    • 80053307055 scopus 로고    scopus 로고
    • Apply extended self-organizing map to cluster and classify mixed-type data
    • C.C. Hsu, S.H. Lin, and W.S. Tai Apply extended self-organizing map to cluster and classify mixed-type data Neurocomputing 74 2011 3832 3842
    • (2011) Neurocomputing , vol.74 , pp. 3832-3842
    • Hsu, C.C.1    Lin, S.H.2    Tai, W.S.3
  • 30
    • 32644443104 scopus 로고    scopus 로고
    • Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation
    • W.L. Hung, M.S. Yang, and D.H. Chen Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation Pattern Recognition Lett. 27 2006 424 438
    • (2006) Pattern Recognition Lett. , vol.27 , pp. 424-438
    • Hung, W.L.1    Yang, M.S.2    Chen, D.H.3
  • 31
    • 45449099044 scopus 로고    scopus 로고
    • Dynamic clustering of interval data using a Wasserstein-based distance
    • A. Irpino, and R. Verde Dynamic clustering of interval data using a Wasserstein-based distance Pattern Recognition Lett. 29 2008 1648 1658
    • (2008) Pattern Recognition Lett. , vol.29 , pp. 1648-1658
    • Irpino, A.1    Verde, R.2
  • 32
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • T. Kohonen Self-organized formation of topologically correct feature maps Biol. Cybern. 43 1982 59 69
    • (1982) Biol. Cybern. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 33
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen The self-organizing map Proc. IEEE 78 1990 1464 1480
    • (1990) Proc. IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 34
    • 52649093901 scopus 로고    scopus 로고
    • Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering
    • W. Liao, H. Chen, Q. Yang, and X. Lei Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering IEEE Trans. Med. Imaging 27 2008 1472 1483
    • (2008) IEEE Trans. Med. Imaging , vol.27 , pp. 1472-1483
    • Liao, W.1    Chen, H.2    Yang, Q.3    Lei, X.4
  • 35
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R.P. Lippmann, An introduction to computing with neural nets, in: IEEE ASSP, 1987, pp. 4-22.
    • (1987) IEEE ASSP , pp. 4-22
    • Lippmann, R.P.1
  • 36
    • 0026043412 scopus 로고
    • On the rate of convergence in topology preserving neural networks
    • Z.P. Lo, and B. Bavarian On the rate of convergence in topology preserving neural networks Biol. Cybern. 65 1991 55 63
    • (1991) Biol. Cybern. , vol.65 , pp. 55-63
    • Lo, Z.P.1    Bavarian, B.2
  • 38
    • 0042341570 scopus 로고    scopus 로고
    • Clustering and its validation in a symbolic framework
    • K. Mali, and S. Mitra Clustering and its validation in a symbolic framework Pattern Recognition Lett. 24 2003 2367 2376
    • (2003) Pattern Recognition Lett. , vol.24 , pp. 2367-2376
    • Mali, K.1    Mitra, S.2
  • 39
    • 0020783239 scopus 로고
    • Automated construction of classifications: Conceptual clustering versus numerical taxonomy
    • R. Michalski, and R.E. Stepp Automated construction of classifications: conceptual clustering versus numerical taxonomy IEEE Trans. Pattern Anal. Mach. Intell. 5 1983 396 410
    • (1983) IEEE Trans. Pattern Anal. Mach. Intell. , vol.5 , pp. 396-410
    • Michalski, R.1    Stepp, R.E.2
  • 40
    • 79953038607 scopus 로고    scopus 로고
    • Far beyond the classical data models: Symbolic data analysis
    • M. Noirhomme-Fraiture, and P. Brito Far beyond the classical data models: symbolic data analysis Stat. Anal. Data Min. 4 2011 157 170
    • (2011) Stat. Anal. Data Min. , vol.4 , pp. 157-170
    • Noirhomme-Fraiture, M.1    Brito, P.2
  • 41
    • 81155122947 scopus 로고    scopus 로고
    • HSC: A multi-resolution clustering strategy in Self-Organizing Maps applied to astronomical observations
    • D. Ordóñez, C. Dafonte, B. Arcay, and M. Manteiga HSC: a multi-resolution clustering strategy in Self-Organizing Maps applied to astronomical observations Appl. Soft Comput. 12 2012 204 215
    • (2012) Appl. Soft Comput. , vol.12 , pp. 204-215
    • Ordóñez, D.1    Dafonte, C.2    Arcay, B.3    Manteiga, M.4
  • 43
    • 0002961288 scopus 로고
    • On the stationary state of Kohonens self-organizing sensory mapping
    • H. Ritter, and K. Schulten On the stationary state of Kohonens self-organizing sensory mapping Biol. Cybern. 54 1986 99 106
    • (1986) Biol. Cybern. , vol.54 , pp. 99-106
    • Ritter, H.1    Schulten, K.2
  • 44
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt The perceptron: a probabilistic model for information storage and organization in the brain Psychol. Rev. 65 1958 386 408
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 45
    • 0345257354 scopus 로고    scopus 로고
    • A fuzzy-soft learning vector quantization
    • K.L. Wu, and M.S. Yang A fuzzy-soft learning vector quantization Neurocomputing 55 2003 681 697
    • (2003) Neurocomputing , vol.55 , pp. 681-697
    • Wu, K.L.1    Yang, M.S.2
  • 46
    • 18444403761 scopus 로고    scopus 로고
    • A cluster validity index for fuzzy clustering
    • K.L. Wu, and M.S. Yang A cluster validity index for fuzzy clustering Pattern Recognition Lett. 26 2005 1275 1291
    • (2005) Pattern Recognition Lett. , vol.26 , pp. 1275-1291
    • Wu, K.L.1    Yang, M.S.2
  • 48
    • 0002376884 scopus 로고
    • A survey of fuzzy clustering
    • M.S. Yang A survey of fuzzy clustering Math. Comput. Modeling 18 1993 1 16
    • (1993) Math. Comput. Modeling , vol.18 , pp. 1-16
    • Yang, M.S.1
  • 49
    • 0346778567 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms for mixed feature variables
    • M.S. Yang, P.Y. Hung, and D.H. Chen Fuzzy clustering algorithms for mixed feature variables Fuzzy Sets Syst. 141 2004 301 317
    • (2004) Fuzzy Sets Syst. , vol.141 , pp. 301-317
    • Yang, M.S.1    Hung, P.Y.2    Chen, D.H.3
  • 50
    • 0037103442 scopus 로고    scopus 로고
    • A fuzzy-soft learning vector quantization for control chart pattern recognition
    • M.S. Yang, and J.H. Yang A fuzzy-soft learning vector quantization for control chart pattern recognition Int. J. Prod. Res. 40 2002 2721 2731
    • (2002) Int. J. Prod. Res. , vol.40 , pp. 2721-2731
    • Yang, M.S.1    Yang, J.H.2
  • 51
    • 84862860188 scopus 로고    scopus 로고
    • Analysis System of Symbolic Official (ASSO) data
    • Analysis System of Symbolic Official (ASSO) data, SODAS2 software - SYKSOM algorithm, Available from: 〈 http://www.info.fundp.ac.be/asso/index. html 〉.
    • SODAS2 Software - SYKSOM Algorithm


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.