메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 229-234

Divisive monothetic clustering for interval and histogram-valued data

Author keywords

Divisive clustering; Histogram data; Interval data; Monothetic clustering

Indexed keywords

CLUSTERING METHODS; DIVISIVE CLUSTERING; HISTOGRAM DATA; INTERVAL DATA; INTERVAL-VALUED; INTRA-CLUSTER; MONOTHETIC CLUSTERING; TOPDOWN;

EID: 84862207158     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (32)
  • 3
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • Boley, D. L. (1998). Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4):325-344.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 325-344
    • Boley, D.L.1
  • 5
    • 0011736486 scopus 로고
    • Use of pyramids in symbolic data analysis
    • Diday, E. et al., editors Berlin-Heidelberg. Springer
    • Brito, P. (1994). Use of pyramids in symbolic data analysis. In Diday, E. et al., editors, New Approaches in Classification and Data Analysis, pages 378-386, Berlin-Heidelberg. Springer.
    • (1994) New Approaches in Classification and Data Analysis , pp. 378-386
    • Brito, P.1
  • 6
    • 21844502976 scopus 로고
    • Symbolic objects: Order structure and pyramidal clustering
    • Brito, P. (1995). Symbolic objects: order structure and pyramidal clustering. Annals of Operations Research, 55:277-297.
    • (1995) Annals of Operations Research , vol.55 , pp. 277-297
    • Brito, P.1
  • 7
    • 79953058596 scopus 로고    scopus 로고
    • Symbolic clustering of probabilistic data
    • Rizzi, A. et al., editors Berlin-Heidelberg. Springer
    • Brito, P. (1998). Symbolic clustering of probabilistic data. In Rizzi, A. et al., editors, Advances in Data Science and Classification, pages 385-389, Berlin-Heidelberg. Springer.
    • (1998) Advances in Data Science and Classification , pp. 385-389
    • Brito, P.1
  • 8
    • 0032154982 scopus 로고    scopus 로고
    • A monothetic clustering method
    • Chavent, M. (1998). A monothetic clustering method. Pattern Recognition Letters, 19(11):989-996.
    • (1998) Pattern Recognition Letters , vol.19 , Issue.11 , pp. 989-996
    • Chavent, M.1
  • 9
    • 33750203953 scopus 로고    scopus 로고
    • Criterion-based divisive clustering for symbolic objects
    • Bock, H.-H. and Diday, E., editors Berlin-Heidelberg. Springer
    • Chavent, M. (2000). Criterion-based divisive clustering for symbolic objects. In Bock, H.-H. and Diday, E., editors, Analysis of Symbolic Data, pages 299-311, Berlin-Heidelberg. Springer.
    • (2000) Analysis of Symbolic Data , pp. 299-311
    • Chavent, M.1
  • 11
    • 35148846471 scopus 로고    scopus 로고
    • DIVCLUS-T: A monothetic divisive hierarchical clustering method
    • Chavent, M., Lechevallier, Y., and Briant, O. (2007). DIVCLUS-T: A monothetic divisive hierarchical clustering method. CSDA, 52(2):687-701.
    • (2007) CSDA , vol.52 , Issue.2 , pp. 687-701
    • Chavent, M.1    Lechevallier, Y.2    Briant, O.3
  • 12
    • 0038988317 scopus 로고
    • Classification and discrimination: The RECPAM approach
    • Dutter, R. and Grossmann, W., editors Physica Verlag
    • Ciampi, A. (1994). Classification and discrimination: the RECPAM approach. In Dutter, R. and Grossmann, W., editors, Proc. COMPSTAT'94, pages 129-147. Physica Verlag.
    • (1994) Proc. COMPSTAT'94 , pp. 129-147
    • Ciampi, A.1
  • 15
    • 75449087623 scopus 로고    scopus 로고
    • Unsupervised pattern recognition models for mixed feature-type symbolic data
    • De Carvalho, F. A. T. and De Souza, R. M. C. R. (2010). Unsupervised pattern recognition models for mixed feature-type symbolic data. Pattern Recognition Letters, 31(5):430-443.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.5 , pp. 430-443
    • De Carvalho, F.A.T.1    De Souza, R.M.C.R.2
  • 16
    • 0346724786 scopus 로고    scopus 로고
    • Clustering of interval data based on city-block distances
    • De Souza, R. M. C. R. and De Carvalho, F. A. T. (2004). Clustering of interval data based on city-block distances. Pattern Recognition Letters, 25(3):353-365.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.3 , pp. 353-365
    • De Souza, R.M.C.R.1    De Carvalho, F.A.T.2
  • 17
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classification
    • Dhillon, I. S., Mallela, S., and Kumar, R. (2003). A divisive information-theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research, 3:1265-1287.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 19
    • 60649118355 scopus 로고    scopus 로고
    • Farthest centroids divisive clustering
    • Fang, H. and Saad, Y. (2008). Farthest centroids divisive clustering. In Proc. ICMLA, pages 232-238.
    • (2008) Proc. ICMLA , pp. 232-238
    • Fang, H.1    Saad, Y.2
  • 20
    • 0018152833 scopus 로고
    • Disaggregative clustering using the concept of mutual nearest neighborhood
    • Gowda, K. C. and Krishna, G. (1978). Disaggregative clustering using the concept of mutual nearest neighborhood. IEEE Trans. SMC, 8:888-895.
    • (1978) IEEE Trans. SMC , vol.8 , pp. 888-895
    • Gowda, K.C.1    Krishna, G.2
  • 21
    • 79953066719 scopus 로고    scopus 로고
    • Clustering and validation of interval data
    • Brito, P. et al., editors Heidelberg. Springer
    • Hardy, A. and Baune, J. (2007). Clustering and validation of interval data. In Brito, P. et al., editors, Selected Contributions in Data Analysis and Classification, pages 69-82, Heidelberg. Springer.
    • (2007) Selected Contributions in Data Analysis and Classification , pp. 69-82
    • Hardy, A.1    Baune, J.2
  • 22
    • 79953050753 scopus 로고    scopus 로고
    • A new clustering method for interval data
    • Hardy, A. and Kasaro, N. (2009). A new clustering method for interval data. MSH/MSS, 187:79-91.
    • (2009) MSH/MSS , vol.187 , pp. 79-91
    • Hardy, A.1    Kasaro, N.2
  • 23
    • 58949098840 scopus 로고    scopus 로고
    • A new wasserstein based distance for the hierarchical clustering of histogram symbolic data
    • Batagelj, V. et al., editors Heidelberg. Springer
    • Irpino, A. and Verde, R. (2006). A new Wasserstein based distance for the hierarchical clustering of histogram symbolic data. In Batagelj, V. et al., editors, Proc. IFCS 2006, pages 185-192, Heidelberg. Springer.
    • (2006) Proc. IFCS 2006 , pp. 185-192
    • Irpino, A.1    Verde, R.2
  • 25
    • 0004669679 scopus 로고
    • Note on a new information statistic classification program
    • Lance, G. N. and Williams, W. T. (1968). Note on a new information statistic classification program. The Computer Journal, 11:195-197.
    • (1968) The Computer Journal , vol.11 , pp. 195-197
    • Lance, G.N.1    Williams, W.T.2
  • 26
    • 0000415463 scopus 로고
    • Dissimilarity analysis: A new technique of hierarchical subdivision
    • MacNaughton-Smith, P. (1964). Dissimilarity analysis: A new technique of hierarchical subdivision. Nature, 202:1034-1035.
    • (1964) Nature , vol.202 , pp. 1034-1035
    • MacNaughton-Smith, P.1
  • 27
    • 0002096383 scopus 로고
    • A recent advance in data analysis: Clustering objects into classes characterized by conjunctive concepts
    • Kanal, L. N. and Rosenfeld, A., editors Springer
    • Michalski, R. S., Diday, E., and Stepp, R. (1981). A recent advance in data analysis: Clustering objects into classes characterized by conjunctive concepts. In Kanal, L. N. and Rosenfeld, A., editors, Progress in Pattern Recognition, pages 33-56. Springer.
    • (1981) Progress in Pattern Recognition , pp. 33-56
    • Michalski, R.S.1    Diday, E.2    Stepp, R.3
  • 28
    • 0003046842 scopus 로고
    • Learning from observations: Conceptual clustering
    • Michalsky, R. S. et al., editors Morgan Kaufmann
    • Michalski, R. S. and Stepp, R. (1983). Learning from observations: Conceptual clustering. In Michalsky, R. S. et al., editors, Machine Learning: An Artificial Intelligence Approach, pages 163-190. Morgan Kaufmann.
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 163-190
    • Michalski, R.S.1    Stepp, R.2
  • 29
    • 79953038607 scopus 로고    scopus 로고
    • Far beyond the classical data models: Symbolic data analysis
    • Noirhomme-Fraiture, M. and Brito, P. (2011). Far beyond the classical data models: Symbolic data analysis. Statistical Analysis and Data Mining, 4(2):157-170.
    • (2011) Statistical Analysis and Data Mining , vol.4 , Issue.2 , pp. 157-170
    • Noirhomme-Fraiture, M.1    Brito, P.2
  • 30
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1:81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 32
    • 0007692347 scopus 로고
    • Multivariate methods in plant ecology
    • Williams, W. T. and Lambert, J. M. (1959). Multivariate methods in plant ecology. J. Ecology, 47:83-101.
    • (1959) J. Ecology , vol.47 , pp. 83-101
    • Williams, W.T.1    Lambert, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.