메뉴 건너뛰기




Volumn 71, Issue 16-18, 2008, Pages 3344-3352

Forecasting models for interval-valued time series

Author keywords

ARIMA model; Artificial neural networks; Hybrid models; Interval valued data; Symbolic data analysis; Time series

Indexed keywords

FORECASTING; MEAN SQUARE ERROR; NEURAL NETWORKS; TIME SERIES;

EID: 56549127838     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.02.022     Document Type: Conference Paper
Times cited : (138)

References (35)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike A new look at the statistical model identification IEEE Trans. Autom. Control 19 1974 716 723
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 0041743064 scopus 로고    scopus 로고
    • From the statistics of data to the statistics of knowledge: Symbolic data analysis
    • L. Billard, and E. Diday From the statistics of data to the statistics of knowledge: symbolic data analysis J. Am. Stat. Assoc. 98 462 2003 470 487
    • (2003) J. Am. Stat. Assoc. , vol.98 , Issue.462 , pp. 470-487
    • Billard, L.1    Diday, E.2
  • 8
    • 0039957466 scopus 로고    scopus 로고
    • Extension de l'analyse en composantes principales à des données de type intervalle
    • P. Cazes, A. Chouakria, E. Diday, and S. Schektman Extension de l'analyse en composantes principales à des données de type intervalle Revue de Statistique Apliquée XLV 3 1997 5 24
    • (1997) Revue de Statistique Apliquée , vol.45 , Issue.3 , pp. 5-24
    • Cazes, P.1    Chouakria, A.2    Diday, E.3    Schektman, S.4
  • 10
    • 33845495645 scopus 로고    scopus 로고
    • Fuzzy c-means clustering methods for symbolic interval data
    • F.A.T. De Carvalho Fuzzy c-means clustering methods for symbolic interval data Pattern Recognition Lett. 28 2007 423 437
    • (2007) Pattern Recognition Lett. , vol.28 , pp. 423-437
    • De Carvalho, F.A.T.1
  • 11
    • 0028728092 scopus 로고
    • Toward improving exercise ECG for detecting Ischemic heart disease with recurrent and feedforward neural nets
    • G. Dorffner, E. Leitgeb, and H. Koller Toward improving exercise ECG for detecting Ischemic heart disease with recurrent and feedforward neural nets Neural Networks for Signal Process. IV, IEEE 1994 499 508
    • (1994) Neural Networks for Signal Process. IV, IEEE , pp. 499-508
    • Dorffner, G.1    Leitgeb, E.2    Koller, H.3
  • 12
    • 0033242069 scopus 로고    scopus 로고
    • Possibility and necessity pattern classification using an interval arithmetic perceptron
    • G.P. Drago, and S. Ridella Possibility and necessity pattern classification using an interval arithmetic perceptron Neural Comput. Appl. 8 1 1999 40 52
    • (1999) Neural Comput. Appl. , vol.8 , Issue.1 , pp. 40-52
    • Drago, G.P.1    Ridella, S.2
  • 13
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation
    • R.F. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation Econometrica 50 1982 987 1008
    • (1982) Econometrica , vol.50 , pp. 987-1008
    • Engle, R.F.1
  • 14
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • K.C. Gowda, and E. Diday Symbolic clustering using a new dissimilarity measure Pattern Recognition 24 6 1991 567 578
    • (1991) Pattern Recognition , vol.24 , Issue.6 , pp. 567-578
    • Gowda, K.C.1    Diday, E.2
  • 15
    • 0031191950 scopus 로고    scopus 로고
    • Neural networks and traditional time series methods: A synergistic combination in state economic forecasts
    • J.V. Hansen, and R.D. Nelson Neural networks and traditional time series methods: a synergistic combination in state economic forecasts IEEE Trans. Neural Networks 8 1997 863 873
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 863-873
    • Hansen, J.V.1    Nelson, R.D.2
  • 16
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359 366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 18
    • 0027912844 scopus 로고
    • An architecture of neural networks with interval weights and its application to fuzzy regression analysis
    • H. Ishibuchi, H. Tanaka, and H. Okada An architecture of neural networks with interval weights and its application to fuzzy regression analysis Fuzzy Sets Syst. 57 1993 27 39
    • (1993) Fuzzy Sets Syst. , vol.57 , pp. 27-39
    • Ishibuchi, H.1    Tanaka, H.2    Okada, H.3
  • 19
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time-series
    • I. Kaastra, and M. Boyd Designing a neural network for forecasting financial and economic time-series Neurocomputing 10 1996 215 236
    • (1996) Neurocomputing , vol.10 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 20
    • 0002244789 scopus 로고
    • Interval computations: Introduction, uses, and resources
    • R.B. Kearfott Interval computations: introduction, uses, and resources Euromath Bull. 1 2 1994
    • (1994) Euromath Bull. , vol.1 , Issue.2
    • Kearfott, R.B.1
  • 21
    • 0034400501 scopus 로고    scopus 로고
    • Principal component analysis of interval data: A symbolic data analysis approach
    • N.C. Lauro, and F. Palumbo Principal component analysis of interval data: a symbolic data analysis approach Comput. Stat. 15 1 2000 73 87
    • (2000) Comput. Stat. , vol.15 , Issue.1 , pp. 73-87
    • Lauro, N.C.1    Palumbo, F.2
  • 22
    • 35548979016 scopus 로고    scopus 로고
    • Centre and range method for fitting a linear regression model to symbolic interval data
    • E.A. Lima Neto, and F.A.T. De Carvalho Centre and range method for fitting a linear regression model to symbolic interval data Comput. Stat. Data Anal. 52 2008 1500 1515
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 1500-1515
    • Lima Neto, E.A.1    De Carvalho, F.A.T.2
  • 23
    • 0030405597 scopus 로고    scopus 로고
    • Neural network models for forecasting univariate time series
    • H.R. Maier, and G.C. Dandy Neural network models for forecasting univariate time series Neural Networks World 6 5 1996 747 772
    • (1996) Neural Networks World , vol.6 , Issue.5 , pp. 747-772
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 0004293209 scopus 로고
    • Prentice-Hall Englewood Cliffs, NJ
    • R.E. Moore Interval Analysis 1966 Prentice-Hall Englewood Cliffs, NJ
    • (1966) Interval Analysis
    • Moore, R.E.1
  • 27
    • 33847300536 scopus 로고    scopus 로고
    • IMLP: Applying multi-layer perceptrons to interval-valued data
    • A.M. Roque, C. Maté, J. Arroyo, and Á. Sarabia iMLP: applying multi-layer perceptrons to interval-valued data Neural Process. Lett. 25 2 2007 157 169
    • (2007) Neural Process. Lett. , vol.25 , Issue.2 , pp. 157-169
    • Roque, A.M.1    Maté, C.2    Arroyo, J.3    Sarabia, Á.4
  • 29
    • 0000230703 scopus 로고
    • Neural networks as forecasting exports: An empirical test
    • R. Sharda, R. Patil, Neural networks as forecasting exports: an empirical test, in: Proceedings of IJCNN Meeting 1990 2, 1990, pp. 491-494.
    • (1990) Proceedings of IJCNN Meeting 1990 , vol.2 , pp. 491-494
    • Sharda, R.1    Patil, R.2
  • 31
    • 0031250747 scopus 로고    scopus 로고
    • Combination of time series and neural network for reliability forecasting modeling
    • C.T. Su, L.I. Tong, and C.M. Leou Combination of time series and neural network for reliability forecasting modeling J. Chin. Inst. Ind. Eng. 14 4 1997 419 429
    • (1997) J. Chin. Inst. Ind. Eng. , vol.14 , Issue.4 , pp. 419-429
    • Su, C.T.1    Tong, L.I.2    Leou, C.M.3
  • 33
    • 0036140323 scopus 로고    scopus 로고
    • Combining neural network model with seasonal time series ARIMA model
    • F.M. Tseng, H.C. Yu, and G.H. Tzeng Combining neural network model with seasonal time series ARIMA model Technol. Forecast. Soc. Change 69 2002 71 87
    • (2002) Technol. Forecast. Soc. Change , vol.69 , pp. 71-87
    • Tseng, F.M.1    Yu, H.C.2    Tzeng, G.H.3
  • 34
    • 0030110883 scopus 로고    scopus 로고
    • Time series forecasting by combining RBF networks certainty factors and the Box-Jenkins model
    • D.K. Wedding II, and K.J. Cios Time series forecasting by combining RBF networks certainty factors and the Box-Jenkins model Neurocomputing 10 3 1996 149 168
    • (1996) Neurocomputing , vol.10 , Issue.3 , pp. 149-168
    • Wedding II, D.K.1    Cios, K.J.2
  • 35
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • G. Zhang Time series forecasting using a hybrid ARIMA and neural network model Neurocomputing 50 2003 159 175
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.