메뉴 건너뛰기




Volumn 48, Issue 4, 2014, Pages 468-484

Ribosome: Lessons of a molecular factory construction

Author keywords

Escherichia coli; GTPase; ribonucleoprotein complex; ribosome; RNA helicase; RNA methyltransferase; translation

Indexed keywords


EID: 84906066617     PISSN: 00268933     EISSN: 16083245     Source Type: Journal    
DOI: 10.1134/S0026893314040116     Document Type: Review
Times cited : (5)

References (56)
  • 1
    • 0035805213 scopus 로고    scopus 로고
    • Crystal structure of the ribosome at 5.5 angstrom resolution
    • Yusupov M. 2001. Crystal structure of the ribosome at 5. 5 angstrom resolution. Science. 292, 883-896.
    • (2001) Science , vol.292 , pp. 883-896
    • Yusupov, M.1
  • 2
    • 0034699518 scopus 로고    scopus 로고
    • Structure of the 30S ribosomal subunit
    • Wimberly B. 2000. Structure of the 30S ribosomal subunit. Nature. 407, 327-339.
    • (2000) Nature. , vol.407 , pp. 327-339
    • Wimberly, B.1
  • 3
    • 0021100877 scopus 로고
    • The spc ribosomal protein operon of Escherichia coli: Sequence and cotranscription of the ribosomal protein genes and a protein export gene
    • Cerretti D. 1983. The spc ribosomal protein operon of Escherichia coli: Sequence and cotranscription of the ribosomal protein genes and a protein export gene. Nucleic Acids Res. 11, 2599-2616.
    • (1983) Nucleic Acids Res. , vol.11 , pp. 2599-2616
    • Cerretti, D.1
  • 4
    • 10044234372 scopus 로고    scopus 로고
    • rRNA transcription in Escherichia coli
    • Paul B. 2004. rRNA transcription in Escherichia coli. Annu. Rev. Genet. 38, 749-770.
    • (2004) Annu. Rev. Genet. , vol.38 , pp. 749-770
    • Paul, B.1
  • 5
    • 2942571539 scopus 로고    scopus 로고
    • The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs
    • Cannone J. 2002. The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform. 3, 2.
    • (2002) BMC Bioinform. , vol.3 , pp. 2
    • Cannone, J.1
  • 6
    • 0034699518 scopus 로고    scopus 로고
    • Structure of the 30S ribosomal sub-unit
    • Wimberly B. 2000. Structure of the 30S ribosomal sub-unit. Nature. 407(6802), 327-339.
    • (2000) Nature. , vol.407 , Issue.6802 , pp. 327-339
    • Wimberly, B.1
  • 7
    • 67650303382 scopus 로고    scopus 로고
    • Complex assembly landscape for the 30S ribosomal subunit
    • Sykes M. 2009. Complex assembly landscape for the 30S ribosomal subunit. Annu. Rev. Biophys. 38, 197-215.
    • (2009) Annu. Rev. Biophys. , vol.38 , pp. 197-215
    • Sykes, M.1
  • 8
    • 0037321039 scopus 로고    scopus 로고
    • After the ribosome structure: How are the subunits assembled?
    • Williamson J. 2003. After the ribosome structure: How are the subunits assembled? RNA. 9, 165-167.
    • (2003) RNA. , vol.9 , pp. 165-167
    • Williamson, J.1
  • 9
    • 4444244605 scopus 로고    scopus 로고
    • Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly
    • Liiv A. 2004. Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly. J. Mol. Biol. 342, 725-741.
    • (2004) J. Mol. Biol. , vol.342 , pp. 725-741
    • Liiv, A.1
  • 10
    • 0003463151 scopus 로고
    • Complementary sequences 1700 nucleotides apart from a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA
    • Young R. 1978. Complementary sequences 1700 nucleotides apart from a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. Proc. Natl. Acad. Sci. U. S. A. 75, 3593-3597.
    • (1978) Proc. Natl. Acad. Sci. U. S. A. , vol.75 , pp. 3593-3597
    • Young, R.1
  • 11
    • 0018800393 scopus 로고
    • Identification of a novel RNA molecule in a new RNA processing mutant of Escherichia coli which contains 5S ribosomal RNA sequences
    • Ghora B. 1979. Identification of a novel RNA molecule in a new RNA processing mutant of Escherichia coli which contains 5S ribosomal RNA sequences. J. Biol. Chem. 254, 1951-1956.
    • (1979) J. Biol. Chem. , vol.254 , pp. 1951-1956
    • Ghora, B.1
  • 12
    • 0029151159 scopus 로고
    • The tRNA processing enzyme RNase T is essential for maturation of 5S RNA
    • Li Z. 1995. The tRNA processing enzyme RNase T is essential for maturation of 5S RNA. Proc. Natl. Acad. Sci. U. S. A. 92, 6883-6886.
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , pp. 6883-6886
    • Li, Z.1
  • 13
    • 79959438183 scopus 로고    scopus 로고
    • Assembly of bacterial ribosomes
    • Shajani Z. 2011. Assembly of bacterial ribosomes. Annu. Rev. Biochem. 80, 501-526.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 501-526
    • Shajani, Z.1
  • 14
    • 0015901113 scopus 로고
    • Reconstitution of Escherichia coli 30S ribosomal subunits from purified molecular components
    • Held W. 1973. Reconstitution of Escherichia coli 30S ribosomal subunits from purified molecular components. J. Biol. Chem. 248, 5720-5730.
    • (1973) J. Biol. Chem. , vol.248 , pp. 5720-5730
    • Held, W.1
  • 15
    • 0038122829 scopus 로고    scopus 로고
    • Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8
    • Jagannathan I. 2003. Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8. J. Mol. Biol. 330, 373-383.
    • (2003) J. Mol. Biol. , vol.330 , pp. 373-383
    • Jagannathan, I.1
  • 16
    • 0347757093 scopus 로고    scopus 로고
    • Ribosomal protein dependent orientation of the 16S rRNA environment of S15
    • Jagannathan I. 2004. Ribosomal protein dependent orientation of the 16S rRNA environment of S15. J. Mol. Biol. 335, 1173-1185.
    • (2004) J. Mol. Biol. , vol.335 , pp. 1173-1185
    • Jagannathan, I.1
  • 17
    • 0018953425 scopus 로고
    • The assembly of the prokaryotic ribosome
    • Nierhaus K. 1980. The assembly of the prokaryotic ribosome. BioSystems. 12, 273-282.
    • (1980) BioSystems. , vol.12 , pp. 273-282
    • Nierhaus, K.1
  • 18
    • 78049406997 scopus 로고    scopus 로고
    • Visualizing ribosome biogenesis: parallel assembly pathways for 30S subunit
    • Mulder A. 2010. Visualizing ribosome biogenesis: parallel assembly pathways for 30S subunit. Science. 330(6004), 673-677.
    • (2010) Science. , vol.330 , Issue.6004 , pp. 673-677
    • Mulder, A.1
  • 19
    • 84873410888 scopus 로고    scopus 로고
    • Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry
    • Chen S. 2012. Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry. J. Mol. Biol. 425(4), 767-779.
    • (2012) J. Mol. Biol. , vol.425 , Issue.4 , pp. 767-779
    • Chen, S.1
  • 20
    • 0015793219 scopus 로고
    • Rate determining step in the reconstitution of E. coli 30S ribosomal subunits
    • Held W. 1973. Rate determining step in the reconstitution of E. coli 30S ribosomal subunits. Biochemistry. 12, 3273-3281.
    • (1973) Biochemistry , vol.12 , pp. 3273-3281
    • Held, W.1
  • 21
    • 77950866260 scopus 로고    scopus 로고
    • The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution
    • Bunner A. 2010. The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution. J. Mol. Biol. 398, 1-7.
    • (2010) J. Mol. Biol. , vol.398 , pp. 1-7
    • Bunner, A.1
  • 22
    • 28444479853 scopus 로고    scopus 로고
    • An assembly landscape for the 30S ribosomal subunit
    • Talkington M. 2005. An assembly landscape for the 30S ribosomal subunit. Nature. 438, 628-632.
    • (2005) Nature. , vol.438 , pp. 628-632
    • Talkington, M.1
  • 23
    • 0016369454 scopus 로고
    • Total reconstitution of functionally active 50S ribosomal-subunits from Escherichia coli
    • Nierhaus K. 1974. Total reconstitution of functionally active 50S ribosomal-subunits from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 71, 4713-4717.
    • (1974) Proc. Natl. Acad. Sci. U. S. A. , vol.71 , pp. 4713-4717
    • Nierhaus, K.1
  • 24
    • 0017897638 scopus 로고
    • Kinetic and thermodynamic parameters of assembly in vitro of large subunit from Escherichia coli ribosomes
    • Sieber G. 1978. Kinetic and thermodynamic parameters of assembly in vitro of large subunit from Escherichia coli ribosomes. Biochemistry. 17, 3505-3511.
    • (1978) Biochemistry. , vol.17 , pp. 3505-3511
    • Sieber, G.1
  • 25
    • 0014989874 scopus 로고
    • Biosynthesis of ribosomes in E. coli: 1. Properties of ribosomal precursor particles and their RNA components
    • Hayes F. 1971. Biosynthesis of ribosomes in E. coli: 1. Properties of ribosomal precursor particles and their RNA components. Biochimie. 53, 369-382.
    • (1971) Biochimie , vol.53 , pp. 369-382
    • Hayes, F.1
  • 26
    • 0015894763 scopus 로고
    • Two new ribosomal precursor particles in E. coli
    • Lindahl L. 1973. Two new ribosomal precursor particles in E. coli. Nature New Biol. 243, 170-172.
    • (1973) Nature New Biol. , vol.243 , pp. 170-172
    • Lindahl, L.1
  • 27
    • 0016607629 scopus 로고
    • Intermediates and time kinetics of in vivo assembly of Escherichia coli ribosomes
    • Lindahl L. 1975. Intermediates and time kinetics of in vivo assembly of Escherichia coli ribosomes. J. Mol. Biol. 92, 15-37.
    • (1975) J. Mol. Biol. , vol.92 , pp. 15-37
    • Lindahl, L.1
  • 28
    • 0037252143 scopus 로고    scopus 로고
    • The Q motif: A newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis
    • Tanner N. 2003. The Q motif: A newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol. Cell. 11, 127-138.
    • (2003) Mol. Cell. , vol.11 , pp. 127-138
    • Tanner, N.1
  • 29
    • 71049181356 scopus 로고    scopus 로고
    • A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit
    • Elles L. 2009. A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit. Nucleic Acids Res. 37, 6503-6514.
    • (2009) Nucleic Acids Res. 37 , pp. 6503-6514
    • Elles, L.1
  • 30
    • 0038120874 scopus 로고    scopus 로고
    • The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli
    • Charollais J. 2003. The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 48, 1253-1265.
    • (2003) Mol. Microbiol. , vol.48 , pp. 1253-1265
    • Charollais, J.1
  • 31
    • 2542557396 scopus 로고    scopus 로고
    • CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit
    • Charollais J. 2004. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res. 32, 2751-2759.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 2751-2759
    • Charollais, J.1
  • 32
    • 77953628314 scopus 로고    scopus 로고
    • Functional and molecular analysis of Escherichia coli strains lacking multiple DEAD-box helicases
    • Jagessar K. 2010. Functional and molecular analysis of Escherichia coli strains lacking multiple DEAD-box helicases. RNA. 16, 1386-1392.
    • (2010) RNA. , vol.16 , pp. 1386-1392
    • Jagessar, K.1
  • 33
    • 38649135052 scopus 로고    scopus 로고
    • The E. coli RhIE RNA helicase regulates the function of related RNA helicases during ribosome assembly
    • Jain C. 2008. The E. coli RhIE RNA helicase regulates the function of related RNA helicases during ribosome assembly. RNA. 14, 381-389.
    • (2008) RNA. , vol.14 , pp. 381-389
    • Jain, C.1
  • 34
    • 58449101336 scopus 로고    scopus 로고
    • Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ
    • Al Refaii A. 2009. Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ. Mol. Microbiol. 71, 748-762.
    • (2009) Mol. Microbiol. , vol.71 , pp. 748-762
    • Al Refaii, A.1
  • 35
    • 0035089326 scopus 로고    scopus 로고
    • The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli
    • El Hage A. 2001. The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli. Mol. Gen. Genet. 264, 796-808.
    • (2001) Mol. Gen. Genet. , vol.264 , pp. 796-808
    • El Hage, A.1
  • 36
    • 0027362954 scopus 로고
    • Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli
    • Alix J. 1993. Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 90, 9725-9729.
    • (1993) Proc. Natl. Acad. Sci. U. S. A. , vol.90 , pp. 9725-9729
    • Alix, J.1
  • 37
    • 0019388804 scopus 로고
    • Translational regulation by ribosomal protein S8 in Escherichia coli: Structural homology between rRNA binding site and feedback target on mRNA
    • Olins P. O. 1981. Translational regulation by ribosomal protein S8 in Escherichia coli: Structural homology between rRNA binding site and feedback target on mRNA. Nucleic Acids Res. 9, 1757-1764.
    • (1981) Nucleic Acids Res. , vol.9 , pp. 1757-1764
    • Olins, P.O.1
  • 38
    • 70349557671 scopus 로고    scopus 로고
    • Role of GTPases in bacterial ribosome assembly
    • Britton R. 2009. Role of GTPases in bacterial ribosome assembly. Annu. Rev. Microbiol. 63, 155-176.
    • (2009) Annu. Rev. Microbiol. , vol.63 , pp. 155-176
    • Britton, R.1
  • 39
    • 5144227788 scopus 로고    scopus 로고
    • A novel GTPase activated by the small subunit of ribosome
    • Himeno H. 2004. A novel GTPase activated by the small subunit of ribosome. Nucleic Acids Res. 32, 5303-5309.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 5303-5309
    • Himeno, H.1
  • 40
    • 77953717798 scopus 로고    scopus 로고
    • A bacterial GAP-like protein, YihI, regulating the GTPase of Der, an essential GTP-binding protein in Escherichia coli
    • Hwang J. 2010. A bacterial GAP-like protein, YihI, regulating the GTPase of Der, an essential GTP-binding protein in Escherichia coli. J. Mol. Biol. 399, 759-772.
    • (2010) J. Mol. Biol. , vol.399 , pp. 759-772
    • Hwang, J.1
  • 41
    • 0035903205 scopus 로고    scopus 로고
    • An essential GTPase, Der, containing double GTP-binding domains from Escherichia coli and Thermotoga maritima
    • Hwang J. 2001. An essential GTPase, Der, containing double GTP-binding domains from Escherichia coli and Thermotoga maritima. J. Biol. Chem. 276, 31415-31421.
    • (2001) J. Biol. Chem. , vol.276 , pp. 31415-31421
    • Hwang, J.1
  • 42
    • 33748486487 scopus 로고    scopus 로고
    • The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli
    • Hwang J. 2006. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 61, 1660-1672.
    • (2006) Mol. Microbiol. , vol.61 , pp. 1660-1672
    • Hwang, J.1
  • 43
    • 33749362996 scopus 로고    scopus 로고
    • The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly
    • Jiang M. 2006. The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly. J. Bacteriol. 188, 6757-6770.
    • (2006) J. Bacteriol. , vol.188 , pp. 6757-6770
    • Jiang, M.1
  • 44
    • 57549118722 scopus 로고    scopus 로고
    • RNA folding and ribosome assembly
    • Woodson S. 2008. RNA folding and ribosome assembly. Curr. Opin. Chem. Biol. 12(6), 667-673.
    • (2008) Curr. Opin. Chem. Biol. , vol.12 , Issue.6 , pp. 667-673
    • Woodson, S.1
  • 45
    • 35648960799 scopus 로고    scopus 로고
    • Expanding the nucleotide repertoire of the ribosome with posttranscriptional modifications
    • Chow C. 2007. Expanding the nucleotide repertoire of the ribosome with posttranscriptional modifications. ACS Chem. Biol. 2(9), 610-619.
    • (2007) ACS Chem. Biol. , vol.2 , Issue.9 , pp. 610-619
    • Chow, C.1
  • 46
    • 71549158173 scopus 로고    scopus 로고
    • Stereochemical mechanisms of tRNA methyltransferases
    • Hou Y. 2010. Stereochemical mechanisms of tRNA methyltransferases. FEBS Lett. 584, 278-286.
    • (2010) FEBS Lett. , vol.584 , pp. 278-286
    • Hou, Y.1
  • 47
    • 0018286248 scopus 로고
    • Genetics of ribosomal protein methylation in Escherichia coli: 3. Map position of two genes, prmA and prmB, governing methylation of proteins L11 and L3
    • Colson C. 1979. Genetics of ribosomal protein methylation in Escherichia coli: 3. Map position of two genes, prmA and prmB, governing methylation of proteins L11 and L3. Mol. Gen. Genet. 169, 245-250.
    • (1979) Mol. Gen. Genet. , vol.169 , pp. 245-250
    • Colson, C.1
  • 49
    • 0032902763 scopus 로고    scopus 로고
    • Isoaspartate in ribosomal protein S11 of Escherichia coli
    • David C. 1999. Isoaspartate in ribosomal protein S11 of Escherichia coli. J. Bacteriol. 181, 2871-2877.
    • (1999) J. Bacteriol. , vol.181 , pp. 2871-2877
    • David, C.1
  • 50
    • 0033541674 scopus 로고    scopus 로고
    • Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry
    • Arnold R. 1999. Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal. Biochem. 269, 105-112.
    • (1999) Anal. Biochem. , vol.269 , pp. 105-112
    • Arnold, R.1
  • 51
    • 0030017693 scopus 로고    scopus 로고
    • Methylthio-aspartic acid: identification of a novel posttranslational modification in ribosomal protein S12 from Escherichia coli
    • Kowalak J. 1996. Methylthio-aspartic acid: identification of a novel posttranslational modification in ribosomal protein S12 from Escherichia coli. Protein Sci. 5, 1625-1632.
    • (1996) Protein Sci. , vol.5 , pp. 1625-1632
    • Kowalak, J.1
  • 52
    • 0017152588 scopus 로고
    • The primary structure of protein L16 located at the peptidyltransferase center of Escherichia coli ribosomes
    • Brosius J. 1976. The primary structure of protein L16 located at the peptidyltransferase center of Escherichia coli ribosomes. FEBS Lett. 68, 105-109.
    • (1976) FEBS Lett. , vol.68 , pp. 105-109
    • Brosius, J.1
  • 53
    • 0742322957 scopus 로고    scopus 로고
    • Mapping structural differences between 30S ribosomal subunit assembly intermediates
    • Holmes K. 2004. Mapping structural differences between 30S ribosomal subunit assembly intermediates. Nature Struct. Mol. Biol. 11, 179-186.
    • (2004) Nature Struct. Mol. Biol. , vol.11 , pp. 179-186
    • Holmes, K.1
  • 54
    • 84888279921 scopus 로고    scopus 로고
    • Posttranslational modifications of ribosomal proteins in Escherichia coli
    • Nesterchuk M. 2011. Posttranslational modifications of ribosomal proteins in Escherichia coli. Acta Naturae. 3(2), 22-33.
    • (2011) Acta Naturae. , vol.3 , Issue.2 , pp. 22-33
    • Nesterchuk, M.1
  • 55
    • 0019793141 scopus 로고
    • Ribosomal protein modification in Escherichia coli: 3. Studies of mutants lacking an acetylase activity specific for protein L12
    • Isono S. 1981. Ribosomal protein modification in Escherichia coli: 3. Studies of mutants lacking an acetylase activity specific for protein L12. Mol. Gen. Genet. 183(3), 473-477.
    • (1981) Mol. Gen. Genet. , vol.183 , Issue.3 , pp. 473-477
    • Isono, S.1
  • 56
    • 55349106559 scopus 로고    scopus 로고
    • Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA
    • Connolly K. 2008. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol. Microbiol. 70(5), 1062-1075.
    • (2008) Mol. Microbiol. , vol.70 , Issue.5 , pp. 1062-1075
    • Connolly, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.