메뉴 건너뛰기




Volumn 289, Issue 32, 2014, Pages 22021-22034

The C-terminal domain of the DNA polymerase catalytic subunit regulates the primase and polymerase activities of the human DNA polymerase α-primase complex

Author keywords

[No Author keywords available]

Indexed keywords

DNA; NUCLEIC ACIDS; RNA;

EID: 84905867880     PISSN: 00219258     EISSN: 1083351X     Source Type: Journal    
DOI: 10.1074/jbc.M114.570333     Document Type: Article
Times cited : (29)

References (62)
  • 2
    • 18044384092 scopus 로고    scopus 로고
    • DNA polymerases that propagate the eukaryotic DNA replication fork
    • Garg, P., and Burgers, P. M. (2005) DNA polymerases that propagate the eukaryotic DNA replication fork. Crit. Rev. Biochem. Mol. Biol. 40, 115-128
    • (2005) Crit. Rev. Biochem. Mol. Biol. , vol.40 , pp. 115-128
    • Garg, P.1    Burgers, P.M.2
  • 3
    • 33845496081 scopus 로고    scopus 로고
    • Roles of DNA polymerases in replication, repair, and recombination in eukaryotes
    • Pavlov, Y. I., Shcherbakova, P. V., and Rogozin, I. B. (2006) Roles of DNA polymerases in replication, repair, and recombination in eukaryotes. Int. Rev. Cytol. 255, 41-132
    • (2006) Int. Rev. Cytol. , vol.255 , pp. 41-132
    • Pavlov, Y.I.1    Shcherbakova, P.V.2    Rogozin, I.B.3
  • 4
    • 77957740230 scopus 로고    scopus 로고
    • Evolving views of DNA replication (in)fidelity
    • Kunkel, T. A. (2009) Evolving views of DNA replication (in)fidelity. Cold Spring Harb. Symp. Quant. Biol. 74, 91-101
    • (2009) Cold Spring Harb. Symp. Quant. Biol. , vol.74 , pp. 91-101
    • Kunkel, T.A.1
  • 5
    • 84878924591 scopus 로고    scopus 로고
    • Composition and dynamics of the eukaryotic replisome: A brief overview
    • MacNeill, S. (2012) Composition and dynamics of the eukaryotic replisome: a brief overview. Subcell. Biochem. 62, 1-17
    • (2012) Subcell. Biochem. , vol.62 , pp. 1-17
    • Macneill, S.1
  • 7
    • 84874695795 scopus 로고    scopus 로고
    • Helicase activation and establishment of replication forks at chromosomal origins of replication
    • Tanaka, S., and Araki, H. (2013) Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb. Perspect. Biol. 5, a010371
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5
    • Tanaka, S.1    Araki, H.2
  • 8
    • 84876319685 scopus 로고    scopus 로고
    • The Pol-primase complex
    • Pellegrini, L. (2012) The Pol-primase complex. Subcell. Biochem. 62, 157-169
    • (2012) Subcell. Biochem. , vol.62 , pp. 157-169
    • Pellegrini, L.1
  • 9
    • 84868700132 scopus 로고    scopus 로고
    • Structure and function of eukaryotic DNA polymerase
    • Tahirov, T. H. (2012) Structure and function of eukaryotic DNA polymerase. Subcell. Biochem. 62, 217-236
    • (2012) Subcell. Biochem. , vol.62 , pp. 217-236
    • Tahirov, T.H.1
  • 11
    • 54249092768 scopus 로고    scopus 로고
    • Dividing the workload at a eukaryotic replication fork
    • Kunkel, T. A., and Burgers, P. M. (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol. 18, 521-527
    • (2008) Trends Cell Biol. , vol.18 , pp. 521-527
    • Kunkel, T.A.1    Burgers, P.M.2
  • 12
    • 75749086797 scopus 로고    scopus 로고
    • DNA polymerases at the eukaryotic fork-20 years later
    • Pavlov, Y. I., and Shcherbakova, P. V. (2010) DNA polymerases at the eukaryotic fork-20 years later. Mutat Res 685, 45-53
    • (2010) Mutat Res , vol.685 , pp. 45-53
    • Pavlov, Y.I.1    Shcherbakova, P.V.2
  • 14
    • 0030443024 scopus 로고    scopus 로고
    • DNA polymerase α and the control of DNA damage induced mutagenesis in eukaryotes
    • Lawrence, C. W., and Hinkle, D. C. (1996) DNA polymerase α and the control of DNA damage induced mutagenesis in eukaryotes. Cancer Surv. 28, 21-31
    • (1996) Cancer Surv. , vol.28 , pp. 21-31
    • Lawrence, C.W.1    Hinkle, D.C.2
  • 15
    • 74249092035 scopus 로고    scopus 로고
    • Participation of DNA polymerase α in replication of undamaged DNA in Saccharomyces cerevisiae
    • Northam, M. R., Robinson, H. A., Kochenova, O. V., and Shcherbakova, P. V. (2010) Participation of DNA polymerase α in replication of undamaged DNA in Saccharomyces cerevisiae. Genetics 184, 27-42
    • (2010) Genetics , vol.184 , pp. 27-42
    • Northam, M.R.1    Robinson, H.A.2    Kochenova, O.V.3    Shcherbakova, P.V.4
  • 16
    • 77949570959 scopus 로고    scopus 로고
    • Mechanism and evolution of DNA primases
    • Kuchta, R. D., and Stengel, G. (2010) Mechanism and evolution of DNA primases. Biochim Biophys Acta 1804, 1180-1189
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1180-1189
    • Kuchta, R.D.1    Stengel, G.2
  • 18
    • 0037117724 scopus 로고    scopus 로고
    • The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting
    • Zerbe, L. K., and Kuchta, R. D. (2002) The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting. Biochemistry 41, 4891-4900
    • (2002) Biochemistry , vol.41 , pp. 4891-4900
    • Zerbe, L.K.1    Kuchta, R.D.2
  • 19
    • 84862776917 scopus 로고    scopus 로고
    • Intrinsic coupling of lagging-strand synthesis to chromatin assembly
    • Smith, D. J., and Whitehouse, I. (2012) Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483, 434-438
    • (2012) Nature , vol.483 , pp. 434-438
    • Smith, D.J.1    Whitehouse, I.2
  • 21
    • 84864512844 scopus 로고    scopus 로고
    • Pol31 and Pol32 subunits of yeastDNApolymerase α are also essential subunits ofDNApolymerase
    • Johnson, R. E., Prakash, L., and Prakash, S. (2012) Pol31 and Pol32 subunits of yeastDNApolymerase α are also essential subunits ofDNApolymerase. Proc. Natl. Acad. Sci. U.S.A. 109, 12455-12460
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 12455-12460
    • Johnson, R.E.1    Prakash, L.2    Prakash, S.3
  • 22
    • 84871256295 scopus 로고    scopus 로고
    • A four-subunit DNA polymerase α complex containing Pol α accessory subunits is essential for PCNA-mediated mutagenesis
    • Makarova, A. V., Stodola, J. L., and Burgers, P. M. (2012) A four-subunit DNA polymerase α complex containing Pol α accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res. 40, 11618-11626
    • (2012) Nucleic Acids Res. , vol.40 , pp. 11618-11626
    • Makarova, A.V.1    Stodola, J.L.2    Burgers, P.M.3
  • 24
    • 84896820727 scopus 로고    scopus 로고
    • Human Pol α purified with accessory subunits is active in translesion DNA synthesis and complements Pol in cisplatin bypass
    • Lee, Y. S., Gregory, M. T., and Yang, W. (2014) Human Pol α purified with accessory subunits is active in translesion DNA synthesis and complements Pol in cisplatin bypass. Proc. Natl. Acad. Sci. U.S.A. 111, 2954-2959
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 2954-2959
    • Lee, Y.S.1    Gregory, M.T.2    Yang, W.3
  • 25
    • 0032491540 scopus 로고    scopus 로고
    • Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase α in DNA replication and the S/M checkpoint pathway
    • Dua, R., Levy, D. L., and Campbell, J. L. (1998) Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase α in DNA replication and the S/M checkpoint pathway. J. Biol. Chem. 273, 30046-30055
    • (1998) J. Biol. Chem. , vol.273 , pp. 30046-30055
    • Dua, R.1    Levy, D.L.2    Campbell, J.L.3
  • 26
    • 67650409702 scopus 로고    scopus 로고
    • 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases
    • Klinge, S., Núñez-Ramírez, R., Llorca, O., and Pellegrini, L. (2009) 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases. EMBO J. 28, 1978-1987
    • (2009) EMBO J. , vol.28 , pp. 1978-1987
    • Klinge, S.1    Núñez-Ramírez, R.2    Llorca, O.3    Pellegrini, L.4
  • 28
    • 65349186567 scopus 로고    scopus 로고
    • Evolution of DNA polymerases: An inactivated polymeraseexonuclease module in Pol α and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors
    • Tahirov, T. H., Makarova, K. S., Rogozin, I. B., Pavlov, Y. I., and Koonin, E. V. (2009) Evolution of DNA polymerases: an inactivated polymeraseexonuclease module in Pol α and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol. Direct 4, 11
    • (2009) Biol. Direct , vol.4 , pp. 11
    • Tahirov, T.H.1    Makarova, K.S.2    Rogozin, I.B.3    Pavlov, Y.I.4    Koonin, E.V.5
  • 29
    • 0027379095 scopus 로고
    • Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication
    • Copeland, W. C., and Wang, T. S. (1993) Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication. J. Biol. Chem. 268, 26179-26189
    • (1993) J. Biol. Chem. , vol.268 , pp. 26179-26189
    • Copeland, W.C.1    Wang, T.S.2
  • 30
    • 34548492954 scopus 로고    scopus 로고
    • An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis
    • Klinge, S., Hirst, J., Maman, J. D., Krude, T., and Pellegrini, L. (2007) An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat. Struct. Mol. Biol. 14, 875-877
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 875-877
    • Klinge, S.1    Hirst, J.2    Maman, J.D.3    Krude, T.4    Pellegrini, L.5
  • 31
    • 81955167432 scopus 로고    scopus 로고
    • DNA replication: Failures and inverted fusions
    • Carr, A. M., Paek, A. L., and Weinert, T. (2011) DNA replication: failures and inverted fusions. Semin. Cell Dev. Biol. 22, 866-874
    • (2011) Semin. Cell Dev. Biol. , vol.22 , pp. 866-874
    • Carr, A.M.1    Paek, A.L.2    Weinert, T.3
  • 32
    • 36348995555 scopus 로고    scopus 로고
    • An iron-sulfur cluster in the C-terminal domain of the p58 subunit of humanDNAprimase
    • Weiner, B. E., Huang, H., Dattilo, B. M., Nilges, M. J., Fanning, E., and Chazin, W. J. (2007) An iron-sulfur cluster in the C-terminal domain of the p58 subunit of humanDNAprimase. J. Biol. Chem. 282, 33444-33451
    • (2007) J. Biol. Chem. , vol.282 , pp. 33444-33451
    • Weiner, B.E.1    Huang, H.2    Dattilo, B.M.3    Nilges, M.J.4    Fanning, E.5    Chazin, W.J.6
  • 33
    • 77956363679 scopus 로고    scopus 로고
    • Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase
    • Vaithiyalingam, S., Warren, E. M., Eichman, B. F., and Chazin, W. J. (2010) Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase. Proc. Natl. Acad. Sci. U.S.A. 107, 13684-13689
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 13684-13689
    • Vaithiyalingam, S.1    Warren, E.M.2    Eichman, B.F.3    Chazin, W.J.4
  • 34
    • 84863615796 scopus 로고    scopus 로고
    • A conserved motif in the C-terminal tail of DNA polymerase tethers primase to the eukaryotic replisome
    • Kilkenny, M. L., De Piccoli, G., Perera, R. L., Labib, K., and Pellegrini, L. (2012) A conserved motif in the C-terminal tail of DNA polymerase tethers primase to the eukaryotic replisome. J. Biol. Chem. 287, 23740-23747
    • (2012) J. Biol. Chem. , vol.287 , pp. 23740-23747
    • Kilkenny, M.L.1    De Piccoli, G.2    Perera, R.L.3    Labib, K.4    Pellegrini, L.5
  • 35
    • 0032747634 scopus 로고    scopus 로고
    • Molecular architecture of the mouseDNApolymerase-primase complex
    • Mizuno, T., Yamagishi, K., Miyazawa, H., and Hanaoka, F. (1999) Molecular architecture of the mouseDNApolymerase-primase complex. Mol. Cell. Biol. 19, 7886-7896
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 7886-7896
    • Mizuno, T.1    Yamagishi, K.2    Miyazawa, H.3    Hanaoka, F.4
  • 37
    • 84864571394 scopus 로고    scopus 로고
    • Structural basis for the interaction of a hexameric replicative helicase with the regulatory subunit of human DNA polymerase-primase
    • Zhou, B., Arnett, D. R., Yu, X., Brewster, A., Sowd, G. A., Xie, C. L., Vila, S., Gai, D., Fanning, E., and Chen, X. S. (2012) Structural basis for the interaction of a hexameric replicative helicase with the regulatory subunit of human DNA polymerase-primase. J. Biol. Chem. 287, 26854-26866
    • (2012) J. Biol. Chem. , vol.287 , pp. 26854-26866
    • Zhou, B.1    Arnett, D.R.2    Yu, X.3    Brewster, A.4    Sowd, G.A.5    Xie, C.L.6    Vila, S.7    Gai, D.8    Fanning, E.9    Chen, X.S.10
  • 38
    • 84885048683 scopus 로고    scopus 로고
    • Structures of human primase reveal design of nucleotide elongation site and mode of Pol α tethering
    • Kilkenny, M. L., Longo, M. A., Perera, R. L., and Pellegrini, L. (2013) Structures of human primase reveal design of nucleotide elongation site and mode of Pol α tethering. Proc. Natl. Acad. Sci. U.S.A. 110, 15961-15966
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 15961-15966
    • Kilkenny, M.L.1    Longo, M.A.2    Perera, R.L.3    Pellegrini, L.4
  • 41
    • 0028331879 scopus 로고
    • Calf thymus DNA polymerase-primase: "communication" and primer-template movement between the two active sites
    • Sheaff, R. J., Kuchta, R. D., and Ilsley, D. (1994) Calf thymus DNA polymerase-primase: "communication" and primer-template movement between the two active sites. Biochemistry 33, 2247-2254
    • (1994) Biochemistry , vol.33 , pp. 2247-2254
    • Sheaff, R.J.1    Kuchta, R.D.2    Ilsley, D.3
  • 42
    • 79952674723 scopus 로고    scopus 로고
    • Crystal structure of the C-terminal domain of human DNA primase large subunit: Implications for the mechanism of the primase-polymerase switch
    • Agarkar, V. B., Babayeva, N. D., Pavlov, Y. I., and Tahirov, T. H. (2011) Crystal structure of the C-terminal domain of human DNA primase large subunit: Implications for the mechanism of the primase-polymerase switch. Cell Cycle 10, 926-931
    • (2011) Cell Cycle , vol.10 , pp. 926-931
    • Agarkar, V.B.1    Babayeva, N.D.2    Pavlov, Y.I.3    Tahirov, T.H.4
  • 43
    • 77956325209 scopus 로고    scopus 로고
    • Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase
    • Sauguet, L., Klinge, S., Perera, R. L., Maman, J. D., and Pellegrini, L. (2010) Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase. PLoS ONE 5, e10083
    • (2010) PLoS ONE , vol.5
    • Sauguet, L.1    Klinge, S.2    Perera, R.L.3    Maman, J.D.4    Pellegrini, L.5
  • 44
    • 0031844393 scopus 로고    scopus 로고
    • The second-largest subunit of the mouse DNA polymerase-primase complex facilitates both production and nuclear translocation of the catalytic subunit of DNA polymerase
    • Mizuno, T., Ito, N., Yokoi, M., Kobayashi, A., Tamai, K., Miyazawa, H., and Hanaoka, F. (1998) The second-largest subunit of the mouse DNA polymerase-primase complex facilitates both production and nuclear translocation of the catalytic subunit of DNA polymerase. Mol. Cell. Biol. 18, 3552-3562
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 3552-3562
    • Mizuno, T.1    Ito, N.2    Yokoi, M.3    Kobayashi, A.4    Tamai, K.5    Miyazawa, H.6    Hanaoka, F.7
  • 45
    • 0034955240 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase α are viable but require the DNA damage checkpoint control
    • Feng, W., and D'Urso, G. (2001) Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase α are viable but require the DNA damage checkpoint control. Mol. Cell. Biol. 21, 4495-4504
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 4495-4504
    • Feng, W.1    D'Urso, G.2
  • 48
    • 0032480762 scopus 로고    scopus 로고
    • Stoichiometry and mechanism of assembly of SV40 T antigen complexes with the viral origin of DNA replication and DNA polymerase-primase
    • Huang, S. G., Weisshart, K., Gilbert, I., and Fanning, E. (1998) Stoichiometry and mechanism of assembly of SV40 T antigen complexes with the viral origin of DNA replication and DNA polymerase-primase. Biochemistry 37, 15345-15352
    • (1998) Biochemistry , vol.37 , pp. 15345-15352
    • Huang, S.G.1    Weisshart, K.2    Gilbert, I.3    Fanning, E.4
  • 49
    • 0016252648 scopus 로고
    • Studies on the activity of the a particle-associated DNA polymerase
    • Bohn, E. W., and Wilson, S. H. (1974) Studies on the activity of the a particle-associated DNA polymerase. Cancer Res. 34, 1977-1981
    • (1974) Cancer Res. , vol.34 , pp. 1977-1981
    • Bohn, E.W.1    Wilson, S.H.2
  • 51
    • 0028917904 scopus 로고
    • Active site mapping of the catalytic mouse primase subunit by alanine scanning mutagenesis
    • Copeland, W. C., and Tan, X. (1995) Active site mapping of the catalytic mouse primase subunit by alanine scanning mutagenesis. J. Biol. Chem. 270, 3905-3913
    • (1995) J. Biol. Chem. , vol.270 , pp. 3905-3913
    • Copeland, W.C.1    Tan, X.2
  • 52
    • 84892496098 scopus 로고    scopus 로고
    • Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase
    • Vaithiyalingam, S., Arnett, D. R., Aggarwal, A., Eichman, B. F., Fanning, E., and Chazin, W. J. (2014) Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase. J. Mol. Biol. 426, 558-569
    • (2014) J. Mol. Biol. , vol.426 , pp. 558-569
    • Vaithiyalingam, S.1    Arnett, D.R.2    Aggarwal, A.3    Eichman, B.F.4    Fanning, E.5    Chazin, W.J.6
  • 57
    • 0026677170 scopus 로고
    • Acomputational and experimental study of the bending induced at a double-triple helix junction
    • Chomilier, J., Sun, J. S., Collier, D. A., Garestier, T., Hélène, C., and Lavery, R. (1992)Acomputational and experimental study of the bending induced at a double-triple helix junction. Biophys. Chem. 45, 143-152
    • (1992) Biophys. Chem. , vol.45 , pp. 143-152
    • Chomilier, J.1    Sun, J.S.2    Collier, D.A.3    Garestier, T.4    Hélène, C.5    Lavery, R.6
  • 58
    • 78650840757 scopus 로고    scopus 로고
    • Understanding the sequence-dependence of DNA groove dimensions: Implications for DNA Interactions
    • Oguey, C., Foloppe, N., and Hartmann, B. (2010) Understanding the sequence-dependence of DNA groove dimensions: implications for DNA Interactions. PLoS ONE 5, e15931
    • (2010) PLoS ONE , vol.5
    • Oguey, C.1    Foloppe, N.2    Hartmann, B.3
  • 59
    • 1542606527 scopus 로고    scopus 로고
    • Positive correlation between DNA polymerase-primase pausing and mutagenesis within polypyrimidine/ polypurine microsatellite sequences
    • Hile, S. E., and Eckert, K. A. (2004) Positive correlation between DNA polymerase-primase pausing and mutagenesis within polypyrimidine/ polypurine microsatellite sequences. J. Mol. Biol. 335, 745-759
    • (2004) J. Mol. Biol. , vol.335 , pp. 745-759
    • Hile, S.E.1    Eckert, K.A.2
  • 60
    • 0035369086 scopus 로고    scopus 로고
    • Structure of the replicating complex of a pol α family DNA polymerase
    • Franklin, M. C., Wang, J., and Steitz, T. A. (2001) Structure of the replicating complex of a pol α family DNA polymerase. Cell 105, 657-667
    • (2001) Cell , vol.105 , pp. 657-667
    • Franklin, M.C.1    Wang, J.2    Steitz, T.A.3
  • 61
    • 0036861729 scopus 로고    scopus 로고
    • Dissecting the fidelity of bacteriophage RB69 DNA polymerase: Site-specific modulation of fidelity by polymerase accessory proteins
    • Bebenek, A., Carver, G. T., Dressman, H. K., Kadyrov, F. A., Haseman, J. K., Petrov, V., Konigsberg, W. H., Karam, J. D., and Drake, J. W. (2002) Dissecting the fidelity of bacteriophage RB69 DNA polymerase: site-specific modulation of fidelity by polymerase accessory proteins. Genetics 162, 1003-1018
    • (2002) Genetics , vol.162 , pp. 1003-1018
    • Bebenek, A.1    Carver, G.T.2    Dressman, H.K.3    Kadyrov, F.A.4    Haseman, J.K.5    Petrov, V.6    Konigsberg, W.H.7    Karam, J.D.8    Drake, J.W.9
  • 62
    • 84961981131 scopus 로고    scopus 로고
    • Redox-regulated Inhibition of T7 RNA polymerase via establishment of disulfide linkages by substituted Dppz dirhodium(II,II) complexes
    • Aguirre, J. D., Chifotides, H. T., Angeles-Boza, A. M., Chouai, A., Turro, C., and Dunbar, K. R. (2009) Redox-regulated Inhibition of T7 RNA polymerase via establishment of disulfide linkages by substituted Dppz dirhodium(II,II) complexes. Inorg. Chem. 48, 4435-4444
    • (2009) Inorg. Chem. , vol.48 , pp. 4435-4444
    • Aguirre, J.D.1    Chifotides, H.T.2    Angeles-Boza, A.M.3    Chouai, A.4    Turro, C.5    Dunbar, K.R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.