-
1
-
-
84871240348
-
Rapid, high-throughput library preparation for next-generation sequencing
-
Grunenwald, H., Baas, B., Caruccio, N., Syed, F.: Rapid, high-throughput library preparation for next-generation sequencing. Nature Methods 7(8) (2010)
-
(2010)
Nature Methods
, vol.7
, Issue.8
-
-
Grunenwald, H.1
Baas, B.2
Caruccio, N.3
Syed, F.4
-
2
-
-
84873801934
-
High-throughput sequencing for biology and medicine
-
Soon, W.W., Hariharan, M., Snyder, M.P.: High-throughput sequencing for biology and medicine. Molecular Systems Biology 9, 640 (2013)
-
(2013)
Molecular Systems Biology
, vol.9
, pp. 640
-
-
Soon, W.W.1
Hariharan, M.2
Snyder, M.P.3
-
4
-
-
24644470505
-
Ontological analysis of gene expression data: Current tools, limitations, and open problems
-
Khatri, P., Draghici, S.: Ontological analysis of gene expression data: Current tools, limitations, and open problems. Bioinformatics 21(18), 3587-3595 (2005)
-
(2005)
Bioinformatics
, vol.21
, Issue.18
, pp. 3587-3595
-
-
Khatri, P.1
Draghici, S.2
-
5
-
-
84875317202
-
A systematic comparison of the MetaCyc and KEGG pathway databases
-
Altman, T., Travers, M., Kothari, A., Caspi, R., Karp, P.D.: A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinformatics 14(1), 112 (2013)
-
(2013)
BMC Bioinformatics
, vol.14
, Issue.1
, pp. 112
-
-
Altman, T.1
Travers, M.2
Kothari, A.3
Caspi, R.4
Karp, P.D.5
-
8
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology 7(3-4), 601-620 (2000)
-
(2000)
Journal of Computational Biology: A Journal of Computational Molecular Cell Biology
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe’Er, D.4
-
9
-
-
17644427718
-
Causal proteinsignaling networks derived from multiparameter single-cell data
-
Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal proteinsignaling networks derived from multiparameter single-cell data. Science 308(5721), 523-529 (2005)
-
(2005)
Science
, vol.308
, Issue.5721
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe’Er, D.3
Lauffenburger, D.A.4
Nolan, G.P.5
-
11
-
-
0042496103
-
Learning equivalence classes of Bayesian-network structures
-
Chickering, D.: Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 445-498 (2002)
-
(2002)
Journal of Machine Learning Research
, pp. 445-498
-
-
Chickering, D.1
-
12
-
-
33646107783
-
Large-sample learning of Bayesian networks is NP-hard
-
Chickering, D., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research 5, 1287-1330 (2004)
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1287-1330
-
-
Chickering, D.1
Heckerman, D.2
Meek, C.3
-
13
-
-
33747163541
-
High-dimensional graphs and variable selection with the lasso
-
Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Annals of Statistics 34, 1436-1462 (2006)
-
(2006)
Annals of Statistics
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
14
-
-
33947115409
-
Model selection and estimation in the gaussian graphical model
-
Yuan, M., Lin, Y.: Model selection and estimation in the gaussian graphical model. Biometrika 94(1), 19-35 (2007)
-
(2007)
Biometrika
, vol.94
, Issue.1
, pp. 19-35
-
-
Yuan, M.1
Lin, Y.2
-
15
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
-
Banerjee, O., Ghaoui, L.E., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research 9, 485-516 (2008)
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
Ghaoui, L.E.2
D’Aspremont, A.3
-
17
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432-441 (2008)
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
19
-
-
85162024247
-
Sparse inverse covariance selection via alternating linearization methods
-
MIT Press
-
Scheinberg, K., Ma, S., Goldfarb, D.: Sparse inverse covariance selection via alternating linearization methods. In: Advances in Neural Information Processing Systems 23, pp. 2101-2109. MIT Press (2010)
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 2101-2109
-
-
Scheinberg, K.1
Ma, S.2
Goldfarb, D.3
-
21
-
-
84897505713
-
A proximal newton framework for composite minimization: Graph learning without cholesky decompositions and matrix inversions
-
Dinh, Q.T., Kyrillidis, A., Cevher, V.: A proximal newton framework for composite minimization: Graph learning without cholesky decompositions and matrix inversions. In: International Conference on Machine Learning (2013)
-
(2013)
International Conference on Machine Learning
-
-
Dinh, Q.T.1
Kyrillidis, A.2
Cevher, V.3
-
22
-
-
0001038826
-
Covariance selection
-
Dempster, A.P.: Covariance selection. Biometrika 32, 95-108 (1972)
-
(1972)
Biometrika
, vol.32
, pp. 95-108
-
-
Dempster, A.P.1
-
24
-
-
0001099335
-
Decomposable graphical Gaussian model determination
-
Giudici, P., Green, P.J.: Decomposable graphical Gaussian model determination. Biometrika 86(4), 785-801 (1999)
-
(1999)
Biometrika
, vol.86
, Issue.4
, pp. 785-801
-
-
Giudici, P.1
Green, P.J.2
-
25
-
-
15944399178
-
Sparse graphical models for exploring gene expression data
-
Dobra, A., Hans, C., Jones, B., Nevins, J.R., Yao, G., West, M.: Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis 90(1), 196-212 (2004)
-
(2004)
Journal of Multivariate Analysis
, vol.90
, Issue.1
, pp. 196-212
-
-
Dobra, A.1
Hans, C.2
Jones, B.3
Nevins, J.R.4
Yao, G.5
West, M.6
-
27
-
-
0015660455
-
The application of constrained least squares estimation to image restoration by digital computer
-
Hunt, B.R.: The application of constrained least squares estimation to image restoration by digital computer. IEEE Transactions on Computers C-22(9), 805-812 (1973)
-
(1973)
IEEE Transactions on Computers C
, vol.22
, Issue.9
, pp. 805-812
-
-
Hunt, B.R.1
-
28
-
-
0022102621
-
Classification of textures using Gaussian Markov random fields. IEEE Transactions on Acoustics
-
Chellappa, R., Chatterjee, S.: Classification of textures using Gaussian Markov random fields. IEEE Transactions on Acoustics, Speech and Signal Processing 33(4), 959-963 (1985)
-
(1985)
Speech and Signal Processing
, vol.33
, Issue.4
, pp. 959-963
-
-
Chellappa, R.1
Chatterjee, S.2
-
31
-
-
0036017452
-
Adjusted maximum likelihood and pseudolikelihood estimation for noisy Gaussian Markov random fields
-
Dryden, I., Ippoliti, L., Romagnoli, L.: Adjusted maximum likelihood and pseudolikelihood estimation for noisy Gaussian Markov random fields. Journal of Computational and Graphical Statistics 11(2), 370-388 (2002)
-
(2002)
Journal of Computational and Graphical Statistics
, vol.11
, Issue.2
, pp. 370-388
-
-
Dryden, I.1
Ippoliti, L.2
Romagnoli, L.3
-
38
-
-
0000068589
-
R.A. Fisher and the making of maximum likelihood 1912-1922
-
Aldrich, J.: R.A. Fisher and the making of maximum likelihood 1912-1922. Statistical Science 12(3), 162-176 (1997)
-
(1997)
Statistical Science
, vol.12
, Issue.3
, pp. 162-176
-
-
Aldrich, J.1
-
39
-
-
0000418073
-
On the stability of inverse problems
-
Tikhonov, A.N.: On the stability of inverse problems. Doklady Akademii Nauk SSSR 5, 195-198 (1943)
-
(1943)
Doklady Akademii Nauk SSSR
, vol.5
, pp. 195-198
-
-
Tikhonov, A.N.1
-
42
-
-
84864953191
-
Manifold identification in dual averaging methods for regularized stochastic online learning
-
Lee, S., Wright, S.J.: Manifold identification in dual averaging methods for regularized stochastic online learning. Journal ofMachine Learning Research 13, 1705-1744 (2012)
-
(2012)
Journal Ofmachine Learning Research
, vol.13
, pp. 1705-1744
-
-
Lee, S.1
Wright, S.J.2
-
43
-
-
84882290013
-
Spatio-temporal random fields: Compressible representation and distributed estimation
-
Piatkowski, N., Lee, S., Morik, K.: Spatio-temporal random fields: compressible representation and distributed estimation. Machine Learning 93(1), 115-139 (2013)
-
(2013)
Machine Learning
, vol.93
, Issue.1
, pp. 115-139
-
-
Piatkowski, N.1
Lee, S.2
Morik, K.3
-
44
-
-
33745604236
-
Stable signal recovery from incomplete and inaccurate measurements
-
Candés, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59, 1207-1223 (2005)
-
(2005)
Comm. Pure Appl. Math
, vol.59
, pp. 1207-1223
-
-
Candés, E.J.1
Romberg, J.2
Tao, T.3
-
46
-
-
84855369366
-
Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas
-
Okayama, H., Kohno, T., Ishii, Y., Shimada, Y., Shiraishi, K., Iwakawa, R., Furuta, K., Tsuta, K., Shibata, T., Yamamoto, S., Watanabe, S.I., Sakamoto, H., Kumamoto, K., Takenoshita, S., Gotoh, N., Mizuno, H., Sarai, A., Kawano, S., Yamaguchi, R., Miyano, S., Yokota, J.: Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72(1), 100-111 (2012)
-
(2012)
Cancer Res
, vol.72
, Issue.1
, pp. 100-111
-
-
Okayama, H.1
Kohno, T.2
Ishii, Y.3
Shimada, Y.4
Shiraishi, K.5
Iwakawa, R.6
Furuta, K.7
Tsuta, K.8
Shibata, T.9
Yamamoto, S.10
Watanabe, S.I.11
Sakamoto, H.12
Kumamoto, K.13
Takenoshita, S.14
Gotoh, N.15
Mizuno, H.16
Sarai, A.17
Kawano, S.18
Yamaguchi, R.19
Miyano, S.20
Yokota, J.21
more..
-
47
-
-
84866529515
-
Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma
-
Yamauchi, M., Yamaguchi, R., Nakata, A., Kohno, T., Nagasaki, M., Shimamura, T., Imoto, S., Saito, A., Ueno, K., Hatanaka, Y., Yoshida, R., Higuchi, T., Nomura, M., Beer, D.G., Yokota, J., Miyano, S., Gotoh, N.: Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma. PLoS ONE 7(9), e43923 (2012)
-
(2012)
Plos ONE
, vol.7
, Issue.9
-
-
Yamauchi, M.1
Yamaguchi, R.2
Nakata, A.3
Kohno, T.4
Nagasaki, M.5
Shimamura, T.6
Imoto, S.7
Saito, A.8
Ueno, K.9
Hatanaka, Y.10
Yoshida, R.11
Higuchi, T.12
Nomura, M.13
Beer, D.G.14
Yokota, J.15
Miyano, S.16
Gotoh, N.17
-
48
-
-
77749291770
-
Frozen robust multiarray analysis (FRMA)
-
McCall, M.N., Bolstad, B.M., Irizarry, R.A.: Frozen robust multiarray analysis (fRMA). Biostatistics 11(2), 242-253 (2010)
-
(2010)
Biostatistics
, vol.11
, Issue.2
, pp. 242-253
-
-
McCall, M.N.1
Bolstad, B.M.2
Irizarry, R.A.3
-
49
-
-
79956020510
-
Assessing affymetrix genechip microarray quality
-
McCall, M., Murakami, P., Lukk, M., Huber, W., Irizarry, R.: Assessing affymetrix genechip microarray quality. BMC Bioinformatics 12(1), 137 (2011)
-
(2011)
BMC Bioinformatics
, vol.12
, Issue.1
, pp. 137
-
-
McCall, M.1
Murakami, P.2
Lukk, M.3
Huber, W.4
Irizarry, R.5
-
50
-
-
0032397913
-
Determinant maximization with linear matrix inequality constraints
-
Vandenberghe, L., Boyd, S., Wu, S.P.: Determinant maximization with linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications 19(2), 499-533 (1998)
-
(1998)
SIAM Journal on Matrix Analysis and Applications
, vol.19
, Issue.2
, pp. 499-533
-
-
Vandenberghe, L.1
Boyd, S.2
Wu, S.P.3
-
53
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Programming 103, 127-152 (2005)
-
(2005)
Mathematical Programming
, vol.103
, pp. 127-152
-
-
Nesterov, Y.1
-
54
-
-
61849097176
-
First-order methods for sparse covariance selection
-
d’Aspremont, A., Banerjee, O., El Ghaoui, L.: First-order methods for sparse covariance selection. SIAM Journal on Matrix Analysis and Applications 30(1), 56-66 (2008)
-
(2008)
SIAM Journal on Matrix Analysis and Applications
, vol.30
, Issue.1
, pp. 56-66
-
-
D’Aspremont, A.1
Banerjee, O.2
El Ghaoui, L.3
-
55
-
-
70450200096
-
Smooth optimization approach for sparse covariance selection
-
Lu, Z.: Smooth optimization approach for sparse covariance selection. SIAM Journal on Optimization 19(4), 1807-1827 (2009)
-
(2009)
SIAM Journal on Optimization
, vol.19
, Issue.4
, pp. 1807-1827
-
-
Lu, Z.1
-
56
-
-
84864128199
-
Alternating direction method for covariance selection models
-
Yuan, X.: Alternating direction method for covariance selection models. Journal of Scientific Computing 51(2), 261-273 (2012)
-
(2012)
Journal of Scientific Computing
, vol.51
, Issue.2
, pp. 261-273
-
-
Yuan, X.1
-
57
-
-
85162490550
-
Sparse inverse covariance matrix estimation using quadratic approximation
-
MIT Press
-
Hsieh, C.J., Dhillon, I.S., Ravikumar, P.K., Sustik, M.A.: Sparse inverse covariance matrix estimation using quadratic approximation. In: Advances in Neural Information Processing Systems 24, pp. 2330-2338. MIT Press (2011)
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
, pp. 2330-2338
-
-
Hsieh, C.J.1
Dhillon, I.S.2
Ravikumar, P.K.3
Sustik, M.A.4
-
58
-
-
84877738312
-
Newton-like methods for sparse inverse covariance estimation
-
MIT Press
-
Oztoprak, F., Nocedal, J., Rennie, S., Olsen, P.A.: Newton-like methods for sparse inverse covariance estimation. In: Advances in Neural Information Processing Systems 25, pp. 764-772. MIT Press (2012)
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 764-772
-
-
Oztoprak, F.1
Nocedal, J.2
Rennie, S.3
Olsen, P.A.4
-
59
-
-
84898981075
-
BIG & QUIC: Sparse inverse covariance estimation for a million variables
-
MIT Press
-
Hsieh, C.J., Sustik, M.A., Dhillon, I., Ravikumar, P., Poldrack, R.: BIG & QUIC: Sparse inverse covariance estimation for a million variables. In: Advances in Neural Information Processing Systems 26, pp. 3165-3173. MIT Press (2013)
-
(2013)
Advances in Neural Information Processing Systems
, vol.26
, pp. 3165-3173
-
-
Hsieh, C.J.1
Sustik, M.A.2
Dhillon, I.3
Ravikumar, P.4
Poldrack, R.5
-
61
-
-
0002344794
-
Bootstrap methods: Another look at the jackknife
-
Efron, B.: Bootstrap methods: Another look at the jackknife. Annals of Statistics 7(1), 1-26 (1979)
-
(1979)
Annals of Statistics
, vol.7
, Issue.1
, pp. 1-26
-
-
Efron, B.1
-
62
-
-
0004183412
-
Cross-validation and the bootstrap: Estimating the error rate of a prediction rule
-
Stanford UniversityMay
-
Efron, B., Tibshirani, R.: Cross-validation and the bootstrap: Estimating the error rate of a prediction rule. Technical report. Department of Statistics, Stanford University (May 1995)
-
(1995)
Technical Report. Department of Statistics
-
-
Efron, B.1
Tibshirani, R.2
-
63
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors. Machine Learning 24, 123-140 (1996)
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
64
-
-
84988353097
-
Functional and genetic analysis of the colon cancer network
-
to appear
-
Emmert-Streib, F., Simoes, R.D.M., Glazko, G., McDade, S., Holzinger, A., Dehmer, M., Campbell, F.C.: Functional and genetic analysis of the colon cancer network. BMC Bioinformatics, 1-24 (to appear 2014)
-
(2014)
BMC Bioinformatics
, pp. 1-24
-
-
Emmert-Streib, F.1
Simoes, R.2
Glazko, G.3
McDade, S.4
Holzinger, A.5
Dehmer, M.6
Campbell, F.C.7
-
65
-
-
0001270387
-
Congruent graphs and the connectivity of graphs
-
Whitney, H.: Congruent graphs and the connectivity of graphs. American Journal of Mathematics 54(1), 150-168 (1932)
-
(1932)
American Journal of Mathematics
, vol.54
, Issue.1
, pp. 150-168
-
-
Whitney, H.1
-
66
-
-
0016870630
-
An algorithm for subgraph isomorphism
-
Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM 23(1), 31-42 (1976)
-
(1976)
Journal of the ACM
, vol.23
, Issue.1
, pp. 31-42
-
-
Ullmann, J.R.1
-
69
-
-
70350646989
-
Planar graph isomorphism is in log-space
-
Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in log-space. In: 24th Annual IEEE Conference on Computational Complexity, pp. 203-214 (2009)
-
(2009)
24Th Annual IEEE Conference on Computational Complexity
, pp. 203-214
-
-
Datta, S.1
Limaye, N.2
Nimbhorkar, P.3
Thierauf, T.4
Wagner, F.5
-
72
-
-
84885807915
-
Human-computer interaction & knowledge discovery (HCI-KDD): What is the benefit of bringing those two fields to work together?
-
In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.), Springer, Heidelberg
-
Holzinger, A.: Human-computer interaction & knowledge discovery (HCI-KDD): What is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319-328. Springer, Heidelberg (2013)
-
(2013)
CD-ARES 2013. LNCS
, vol.8127
, pp. 319-328
-
-
Holzinger, A.1
|