-
4
-
-
84855201113
-
Graph isomorphism is in spp
-
[AK06] V. Arvind and Piyush P. Kurur. Graph isomorphism is in spp. Information and Computation, 204(5): 835-852, 2006.
-
(2006)
Information and Computation
, vol.204
, Issue.5
, pp. 835-852
-
-
Arvind, V.1
Kurur, P.P.2
-
7
-
-
0001460029
-
Automorphism groups, isomorphism, reconstruction
-
[Bab95] László Babai. Automorphism groups, isomorphism, reconstruction. Handbook of combinatorics, 2: 1447- 1540, 1995.
-
(1995)
Handbook of Combinatorics
, vol.2
, pp. 1447-1540
-
-
Babai, L.1
-
8
-
-
0023646410
-
Does co-np have short interactive proofs?
-
[BHZ87] Ravi B. Boppana, Johan Hastad, and Stathis Zachos. Does co-NP have short interactive proofs? Information Processing Letters, 25(2): 127-132, 1987.
-
(1987)
Information Processing Letters
, vol.25
, Issue.2
, pp. 127-132
-
-
Boppana, R.B.1
Hastad, J.2
Zachos, S.3
-
12
-
-
0020495011
-
A taxonomy of problems with fast parallel algorithms
-
[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control, 64(1- 3): 2-22, 1985.
-
(1985)
Information and Control
, vol.64
, Issue.1-3
, pp. 2-22
-
-
Cook, S.A.1
-
14
-
-
0001243769
-
Dividing a graph into triconnected components
-
[HT73] John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected components. SIAM Journal on Computing, 2(3): 135-158, 1973.
-
(1973)
SIAM Journal on Computing
, vol.2
, Issue.3
, pp. 135-158
-
-
Hopcroft, J.E.1
Tarjan., R.E.2
-
15
-
-
0016117886
-
Efficient planarity testing
-
[HT74] John E. Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM, 21(4): 549-568, 1974.
-
(1974)
Journal of the ACM
, vol.21
, Issue.4
, pp. 549-568
-
-
Hopcroft, J.E.1
Tarjan, R.2
-
17
-
-
0038575673
-
Completeness results for graph isomorphism
-
[JKMT03] Birgit Jenner, Johannes K̈obler, Pierre McKenzie, and Jacobo Toŕan. Completeness results for graph isomorphism. Journal of Computing and System Sciences, 66(3): 549-566, 2003.
-
(2003)
Journal of Computing and System Sciences
, vol.66
, Issue.3
, pp. 549-566
-
-
Jenner, B.1
K̈obler, J.2
Mckenzie, P.3
Toŕan, J.4
-
18
-
-
27744434243
-
Algorithm and experiments in testing planar graphs for isomorphism
-
[KHC04] Jacek P. Kukluk, Lawrence B. Holder, and Diane J. Cook. Algorithm and experiments in testing planar graphs for isomorphism. Journal of Graph Algorithms and Applications, 8(2): 313-356, 2004.
-
(2004)
Journal of Graph Algorithms and Applications
, vol.8
, Issue.2
, pp. 313-356
-
-
Kukluk, J.P.1
Holder, L.B.2
Cook, D.J.3
-
21
-
-
0039903078
-
A structural characterization of planar combinatorial graphs
-
[Mac37] Saunders Maclane. A structural characterization of planar combinatorial graphs. Duke Mathematical Journal, 3: 460-472, 1937.
-
(1937)
Duke Mathematical Journal
, vol.3
, pp. 460-472
-
-
Maclane, S.1
-
23
-
-
0026368038
-
Parallel tree contraction part 2: Further applications
-
[MR91] Gary L. Miller and John H. Reif. Parallel tree contraction part 2: further applications. SIAM Journal on Computing, 20(6): 1128-1147, 1991.
-
(1991)
SIAM Journal on Computing
, vol.20
, Issue.6
, pp. 1128-1147
-
-
Miller, G.L.1
Reif., J.H.2
-
27
-
-
0024128620
-
Graph isomorphism is in the low hierarchy
-
[Sch88] Uwe Scḧoning. Graph isomorphism is in the low hierarchy. Journal on Computing and System Sciences, 37(3): 312-323, 1988.
-
(1988)
Journal on Computing and System Sciences
, vol.37
, Issue.3
, pp. 312-323
-
-
Scḧoning, U.1
-
28
-
-
8344234151
-
On the hardness of graph isomorphism
-
[Tor04] Jacobo Toŕan. On the hardness of graph isomorphism. SIAM Journal on Computing, 33(5): 1093-1108, 2004.
-
(2004)
SIAM Journal on Computing
, vol.33
, Issue.5
, pp. 1093-1108
-
-
Toŕan, J.1
-
33
-
-
84937076473
-
A simple and efficient algorithm for determining isomorphism of planar triply connected graphs
-
[Wei66] Louis Weinberg. A simple and efficient algorithm for determining isomorphism of planar triply connected graphs. Circuit Theory, 13: 142-148, 1966.
-
(1966)
Circuit Theory
, vol.13
, pp. 142-148
-
-
Weinberg., L.1
-
34
-
-
0010671816
-
A set of topological invariants for graphs
-
[Whi33] Hassler Whitney. A set of topological invariants for graphs. American Journal of Mathematics, 55: 235- 321, 1933.
-
(1933)
American Journal of Mathematics
, vol.55
, pp. 235-321
-
-
Whitney, H.1
|