메뉴 건너뛰기




Volumn 282, Issue , 2014, Pages 321-331

Multi-granularity distance metric learning via neighborhood granule margin maximization

Author keywords

Metric learning; Multiple granularity; Neighborhood granular margin; Neighborhood rough set

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DISTANCE EDUCATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 84905181390     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.06.017     Document Type: Article
Times cited : (41)

References (57)
  • 1
    • 84856658219 scopus 로고    scopus 로고
    • Learning parameterized histogram kernels on the simplex manifold for image and action classification
    • IEEE
    • V. Ablavsky, S. Sclaroff, Learning parameterized histogram kernels on the simplex manifold for image and action classification, in: International Conference on Computer Vision (ICCV 2011), IEEE, 2011, pp. 1473-1480.
    • (2011) International Conference on Computer Vision (ICCV 2011) , pp. 1473-1480
    • Ablavsky, V.1    Sclaroff, S.2
  • 4
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio Learning deep architectures for AI Found. Trends Mach. Learn. 2 2009 1 127
    • (2009) Found. Trends Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 9
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash, and H. Liu Consistency-based search in feature selection Artif. Intell. 151 2003 155 176
    • (2003) Artif. Intell. , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 11
    • 84856674165 scopus 로고    scopus 로고
    • Learning nonlinear distance functions using neural network for regression with application to robust human age estimation
    • IEEE
    • N. Fan, Learning nonlinear distance functions using neural network for regression with application to robust human age estimation, in: International Conference on Computer Vision (ICCV 2011), IEEE, 2011, pp. 249-254.
    • (2011) International Conference on Computer Vision (ICCV 2011) , pp. 249-254
    • Fan, N.1
  • 12
    • 80055063556 scopus 로고    scopus 로고
    • Distance metrics for high dimensional nearest neighborhood recovery: Compression and normalization
    • S.L. France, J. Douglas Carroll, and H. Xiong Distance metrics for high dimensional nearest neighborhood recovery: compression and normalization Inf. Sci. 184 2012 92 110
    • (2012) Inf. Sci. , vol.184 , pp. 92-110
    • France, S.L.1    Douglas Carroll, J.2    Xiong, H.3
  • 13
    • 0034164230 scopus 로고    scopus 로고
    • Special invited paper. Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani Special invited paper. additive logistic regression: a statistical view of boosting Ann. Stat. 28 2000 337 374
    • (2000) Ann. Stat. , vol.28 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 19
    • 77955091406 scopus 로고    scopus 로고
    • Selecting discrete and continuous features based on neighborhood decision error minimization
    • Q. Hu, W. Pedrycz, D. Yu, and J. Lang Selecting discrete and continuous features based on neighborhood decision error minimization IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40 2010 137 150
    • (2010) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.40 , pp. 137-150
    • Hu, Q.1    Pedrycz, W.2    Yu, D.3    Lang, J.4
  • 20
    • 46749140199 scopus 로고    scopus 로고
    • Neighborhood rough set based heterogeneous feature subset selection
    • Q. Hu, D. Yu, J. Liu, and C. Wu Neighborhood rough set based heterogeneous feature subset selection Inf. Sci. 178 2008 3577 3594
    • (2008) Inf. Sci. , vol.178 , pp. 3577-3594
    • Hu, Q.1    Yu, D.2    Liu, J.3    Wu, C.4
  • 21
    • 36148978191 scopus 로고    scopus 로고
    • Neighborhood classifiers
    • DOI 10.1016/j.eswa.2006.10.043, PII S0957417406003484
    • Q. Hu, D. Yu, and Z. Xie Neighborhood classifiers Expert Syst. Appl. 34 2008 866 876 (Pubitemid 350117461)
    • (2008) Expert Systems with Applications , vol.34 , Issue.2 , pp. 866-876
    • Hu, Q.1    Yu, D.2    Xie, Z.3
  • 22
    • 78650231105 scopus 로고    scopus 로고
    • Large-margin nearest neighbor classifiers via sample weight learning
    • Q. Hu, P. Zhu, Y. Yang, and D. Yu Large-margin nearest neighbor classifiers via sample weight learning Neurocomputing 74 2011 656 660
    • (2011) Neurocomputing , vol.74 , pp. 656-660
    • Hu, Q.1    Zhu, P.2    Yang, Y.3    Yu, D.4
  • 24
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • A.K. Jain Data clustering: 50 years beyond k-means Pattern Recogn. Lett. 31 2010 651 666
    • (2010) Pattern Recogn. Lett. , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 25
    • 84866651280 scopus 로고    scopus 로고
    • Order determination and sparsity-regularized metric learning adaptive visual tracking
    • IEEE
    • N. Jiang, W. Liu, Y. Wu, Order determination and sparsity-regularized metric learning adaptive visual tracking, in: Computer Vision and Pattern Recognition (CVPR 2012), IEEE, 2012, pp. 1956-1963.
    • (2012) Computer Vision and Pattern Recognition (CVPR 2012) , pp. 1956-1963
    • Jiang, N.1    Liu, W.2    Wu, Y.3
  • 33
    • 0036543747 scopus 로고    scopus 로고
    • Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition
    • DOI 10.1109/TIP.2002.999679, PII S1057714902035480
    • C. Liu, and H. Wechsler Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition IEEE Trans. Image process. 11 2002 467 476 (Pubitemid 34692396)
    • (2002) IEEE Transactions on Image Processing , vol.11 , Issue.4 , pp. 467-476
    • Liu, C.1    Wechsler, H.2
  • 37
    • 84866651553 scopus 로고    scopus 로고
    • Pcca: A new approach for distance learning from sparse pairwise constraints
    • IEEE
    • A. Mignon, F. Jurie, Pcca: A new approach for distance learning from sparse pairwise constraints, in: Computer Vision and Pattern Recognition (CVPR 2012), IEEE, 2012, pp. 2666-2672.
    • (2012) Computer Vision and Pattern Recognition (CVPR 2012) , pp. 2666-2672
    • Mignon, A.1    Jurie, F.2
  • 38
    • 0032163862 scopus 로고    scopus 로고
    • Solving ill-conditioned and singular linear systems: A tutorial on regularization
    • PII S0036144597321909
    • A. Neumaier Solving ill-conditioned and singular linear systems: a tutorial on regularization Siam Rev. 40 1998 636 666 (Pubitemid 128619822)
    • (1998) SIAM Review , vol.40 , Issue.3 , pp. 636-666
    • Neumaier, A.1
  • 41
    • 84860313267 scopus 로고    scopus 로고
    • Twin Mahalanobis distance-based support vector machines for pattern recognition
    • X. Peng, and D. Xu Twin Mahalanobis distance-based support vector machines for pattern recognition Inf. Sci. 200 2012 22 37
    • (2012) Inf. Sci. , vol.200 , pp. 22-37
    • Peng, X.1    Xu, D.2
  • 43
    • 69049112203 scopus 로고    scopus 로고
    • Sparsity preserving projections with applications to face recognition
    • L. Qiao, S. Chen, and X. Tan Sparsity preserving projections with applications to face recognition Pattern Recognition 43 2010 331 341
    • (2010) Pattern Recognition , vol.43 , pp. 331-341
    • Qiao, L.1    Chen, S.2    Tan, X.3
  • 44
    • 77950861838 scopus 로고    scopus 로고
    • Boosting through optimization of margin distributions
    • C. Shen, and H. Li Boosting through optimization of margin distributions IEEE Trans. Neural Networks 21 2010 659 666
    • (2010) IEEE Trans. Neural Networks , vol.21 , pp. 659-666
    • Shen, C.1    Li, H.2
  • 45
    • 78049526892 scopus 로고    scopus 로고
    • On the dual formulation of boosting algorithms
    • C. Shen, and H. Li On the dual formulation of boosting algorithms IEEE Trans. Pattern Anal. Mach. Intell. 32 2010 2216 2231
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , pp. 2216-2231
    • Shen, C.1    Li, H.2
  • 46
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • D. Tao, X. Tang, X. Li, and X. Wu Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval IEEE Trans. Pattern Anal. Mach. Intell. 28 2006 1088 1099
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 47
    • 84872784072 scopus 로고    scopus 로고
    • ProDis-contSHC: Learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval
    • J. Wang, X. Gao, Q. Wang, and Y. Li ProDis-contSHC: learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval BMC Bioinf. 13 2012 S2
    • (2012) BMC Bioinf. , vol.13 , pp. 2
    • Wang, J.1    Gao, X.2    Wang, Q.3    Li, Y.4
  • 51
    • 84875453568 scopus 로고    scopus 로고
    • K-Local hyperplane distance nearest neighbor classifier oriented local discriminant analysis
    • J. Xu, J. Yang, and Z. Lai K-Local hyperplane distance nearest neighbor classifier oriented local discriminant analysis Inf. Sci. 232 2013 11 26
    • (2013) Inf. Sci. , vol.232 , pp. 11-26
    • Xu, J.1    Yang, J.2    Lai, Z.3
  • 53
    • 84857513492 scopus 로고    scopus 로고
    • Distance metric learning with eigenvalue optimization
    • Y. Ying, and P. Li Distance metric learning with eigenvalue optimization J. Mach. Learn. Res. 13 2012 1 26
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 1-26
    • Ying, Y.1    Li, P.2
  • 54
    • 79953906169 scopus 로고    scopus 로고
    • Dynamic time warping constraint learning for large margin nearest neighbor classification
    • D. Yu, X. Yu, Q. Hu, J. Liu, and A. Wu Dynamic time warping constraint learning for large margin nearest neighbor classification Inf. Sci. 181 2011 2787 2796
    • (2011) Inf. Sci. , vol.181 , pp. 2787-2796
    • Yu, D.1    Yu, X.2    Hu, Q.3    Liu, J.4    Wu, A.5
  • 55
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: International Conference on Machine Learning (ICML 2007), ACM, 2007, pp. 1151-1157. (Pubitemid 47275183)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 56
    • 84883202893 scopus 로고    scopus 로고
    • Adaptive neighborhood granularity selection and combination based on margin distribution optimization
    • P. Zhu, and Q. Hu Adaptive neighborhood granularity selection and combination based on margin distribution optimization Inf. Sci. 249 2013 1 12
    • (2013) Inf. Sci. , vol.249 , pp. 1-12
    • Zhu, P.1    Hu, Q.2
  • 57
    • 84867889909 scopus 로고    scopus 로고
    • Multi-scale patch based collaborative representation for face recognition with margin distribution optimization
    • Springer
    • P. Zhu, L. Zhang, Q. Hu, and S. Shiu Multi-scale patch based collaborative representation for face recognition with margin distribution optimization European Conference on Computer Vision (ECCV 2012) 2012 Springer 822 835
    • (2012) European Conference on Computer Vision (ECCV 2012) , pp. 822-835
    • Zhu, P.1    Zhang, L.2    Hu, Q.3    Shiu, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.