메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1959-1966

Random ensemble metrics for object recognition

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION TECHNIQUES; ENSEMBLE LEARNING; GENERALIZATION PERFORMANCE; GENERIC APPROACH; GLOBAL OBJECTIVE; LINEAR SUPPORT VECTOR MACHINES; METRIC LEARNING; METRIC MATRIX; OVERFITTING; PEDESTRIAN RECOGNITION; PROJECTION VECTORS; TRAINING DATA; VIEWPOINT INVARIANT;

EID: 84856672764     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126466     Document Type: Conference Paper
Times cited : (17)

References (14)
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32,2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. In Machine Learning, pages 273-297,1995.
    • (1995) Machine Learning , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 34547996209 scopus 로고    scopus 로고
    • Information-theoretic metric learning
    • Corvalis, Oregon, USA, June
    • J. V. Davis, B. Kulis, P. Jain, S. Sra, and T. S. Dhillon. Information-theoretic metric learning. In ICML, pages 209-216, Corvalis, Oregon, USA, June 2007.
    • (2007) ICML , pp. 209-216
    • Davis, J.V.1    Kulis, B.2    Jain, P.3    Sra, S.4    Dhillon, T.S.5
  • 9
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals Eugen., 7: 179-188, 1936.
    • (1936) Annals Eugen. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 11
    • 56749169071 scopus 로고    scopus 로고
    • Viewpoint invariant pedestrian recognition with an ensemble of localized features
    • Berlin, Heidelberg,. Springer-Verlag
    • D. Gray and H. Tao. Viewpoint invariant pedestrian recognition with an ensemble of localized features. In Proceedings of the 10th European Conference on Computer Vision: Part I, ECCV'08, pages 262-275, Berlin, Heidelberg, 2008. Springer-Verlag.
    • (2008) Proceedings of the 10th European Conference on Computer Vision: Part I, ECCV'08 , pp. 262-275
    • Gray, D.1    Tao, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.