메뉴 건너뛰기




Volumn 186, Issue , 2014, Pages 128-136

Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy

Author keywords

Acetyl CoA supply; Isoprene; Mevalonic acid pathway; Push pull restrain strategy; Saccharomyces cerevisiae

Indexed keywords

BIOCHEMISTRY; CARBOXYLIC ACIDS; ISOPRENE; METABOLIC ENGINEERING; YEAST;

EID: 84904873611     PISSN: 01681656     EISSN: 18734863     Source Type: Journal    
DOI: 10.1016/j.jbiotec.2014.06.024     Document Type: Article
Times cited : (74)

References (42)
  • 2
    • 77951531018 scopus 로고    scopus 로고
    • Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae
    • Asadollahi M.A., Maury J., Schalk M., Clark A., Nielsen J. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2010, 106:86-96.
    • (2010) Biotechnol. Bioeng. , vol.106 , pp. 86-96
    • Asadollahi, M.A.1    Maury, J.2    Schalk, M.3    Clark, A.4    Nielsen, J.5
  • 3
    • 84891764107 scopus 로고    scopus 로고
    • Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene
    • Bentley F.K., Zurbriggen A., Melis A. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol. Plant. 2014, 7:71-86.
    • (2014) Mol. Plant. , vol.7 , pp. 71-86
    • Bentley, F.K.1    Zurbriggen, A.2    Melis, A.3
  • 4
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann C.B., Davies A., Cost G.J., Caputo E., Li J.C., Hieter P., Boeke J.D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14:115-132.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.C.5    Hieter, P.6    Boeke, J.D.7
  • 5
    • 79952114061 scopus 로고    scopus 로고
    • Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae
    • Chen F., Zhou J., Shi Z., Liu L., Du G., Chen J. Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae. Wei Sheng Wu Xue Bao 2010, 50:1172-1179.
    • (2010) Wei Sheng Wu Xue Bao , vol.50 , pp. 1172-1179
    • Chen, F.1    Zhou, J.2    Shi, Z.3    Liu, L.4    Du, G.5    Chen, J.6
  • 6
    • 84875279038 scopus 로고    scopus 로고
    • Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
    • Chen Y., Daviet L., Schalk M., Siewers V., Nielsen J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab. Eng. 2013, 15:48-54.
    • (2013) Metab. Eng. , vol.15 , pp. 48-54
    • Chen, Y.1    Daviet, L.2    Schalk, M.3    Siewers, V.4    Nielsen, J.5
  • 7
    • 84866744325 scopus 로고    scopus 로고
    • Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae
    • Dai Z., Liu Y., Huang L., Zhang X. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109:2845-2853.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2845-2853
    • Dai, Z.1    Liu, Y.2    Huang, L.3    Zhang, X.4
  • 8
    • 0032145409 scopus 로고    scopus 로고
    • Overproduction of acetyl-coenzyme A synthetase isoenzymes in respiring Saccharomyces cerevisiae cells does not reduce acetate production after exposure to glucose excess
    • de Jong-Gubbels P., van den Berg M.A., Luttik M.A., Steensma H.Y., van Dijken J.P., Pronk J.T. Overproduction of acetyl-coenzyme A synthetase isoenzymes in respiring Saccharomyces cerevisiae cells does not reduce acetate production after exposure to glucose excess. Fems Microbiol. Lett. 1998, 165:15-20.
    • (1998) Fems Microbiol. Lett. , vol.165 , pp. 15-20
    • de Jong-Gubbels, P.1    van den Berg, M.A.2    Luttik, M.A.3    Steensma, H.Y.4    van Dijken, J.P.5    Pronk, J.T.6
  • 9
    • 44749083814 scopus 로고    scopus 로고
    • Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production
    • Engels B., Dahm P., Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab. Eng. 2008, 10:201-206.
    • (2008) Metab. Eng. , vol.10 , pp. 201-206
    • Engels, B.1    Dahm, P.2    Jennewein, S.3
  • 11
    • 0025996980 scopus 로고
    • Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression
    • Griggs D.W., Johnston M. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. U. S. A. 1991, 88:8597-8601.
    • (1991) Proc. Natl. Acad. Sci. U. S. A. , vol.88 , pp. 8597-8601
    • Griggs, D.W.1    Johnston, M.2
  • 13
    • 84862490611 scopus 로고    scopus 로고
    • Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae
    • Hong S.Y., Zurbriggen A.S., Melis A. Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J. Appl. Microbiol. 2012, 113:52-65.
    • (2012) J. Appl. Microbiol. , vol.113 , pp. 52-65
    • Hong, S.Y.1    Zurbriggen, A.S.2    Melis, A.3
  • 14
    • 0041728804 scopus 로고    scopus 로고
    • Metabolic engineering to produce sesquiterpenes in yeast
    • Jackson B.E., Hart-Wells E.A., Matsuda S.P. Metabolic engineering to produce sesquiterpenes in yeast. Org. Lett. 2003, 5:1629-1632.
    • (2003) Org. Lett. , vol.5 , pp. 1629-1632
    • Jackson, B.E.1    Hart-Wells, E.A.2    Matsuda, S.P.3
  • 15
    • 84859772410 scopus 로고    scopus 로고
    • Synthetic biology and the development of tools for metabolic engineering
    • Keasling J.D. Synthetic biology and the development of tools for metabolic engineering. Metab. Eng. 2012, 14:189-195.
    • (2012) Metab. Eng. , vol.14 , pp. 189-195
    • Keasling, J.D.1
  • 16
    • 41549107616 scopus 로고    scopus 로고
    • Engineering triterpene production in Saccharomyces cerevisiae-beta-amyrin synthase from Artemisia annua
    • Kirby J., Romanini D.W., Paradise E.M., Keasling J.D. Engineering triterpene production in Saccharomyces cerevisiae-beta-amyrin synthase from Artemisia annua. Febs J. 2008, 275:1852-1859.
    • (2008) Febs J. , vol.275 , pp. 1852-1859
    • Kirby, J.1    Romanini, D.W.2    Paradise, E.M.3    Keasling, J.D.4
  • 17
    • 0030703529 scopus 로고    scopus 로고
    • Ergosterol determination in Saccharomyces cerevisiae. Comparison of different methods
    • Lamacka M., Sajbidor J. Ergosterol determination in Saccharomyces cerevisiae. Comparison of different methods. Biotechnol. Tech. 1997, 11:723-725.
    • (1997) Biotechnol. Tech. , vol.11 , pp. 723-725
    • Lamacka, M.1    Sajbidor, J.2
  • 19
    • 70449336249 scopus 로고    scopus 로고
    • Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
    • Lindberg P., Park S., Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 2010, 12:70-79.
    • (2010) Metab. Eng. , vol.12 , pp. 70-79
    • Lindberg, P.1    Park, S.2    Melis, A.3
  • 20
    • 1642443922 scopus 로고    scopus 로고
    • Determination of squalene using high-performance liquid chromatography with diode array detection
    • Lu H.T., Jiang Y., Chen F. Determination of squalene using high-performance liquid chromatography with diode array detection. Chromatographia 2004, 59:367-371.
    • (2004) Chromatographia , vol.59 , pp. 367-371
    • Lu, H.T.1    Jiang, Y.2    Chen, F.3
  • 21
    • 84878858289 scopus 로고    scopus 로고
    • Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli
    • Lv X.M., Xu H.M., Yu H.W. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl. Microbiol. Biot. 2013, 97:2357-2365.
    • (2013) Appl. Microbiol. Biot. , vol.97 , pp. 2357-2365
    • Lv, X.M.1    Xu, H.M.2    Yu, H.W.3
  • 22
    • 79951471276 scopus 로고    scopus 로고
    • Astaxanthin biosynthesis is enhanced by high carotenogenic gene expression and decrease of fatty acids and ergosterol in a Phaffia rhodozyma mutant strain
    • Miao L.L., Chi S.A., Tang Y.C., Su Z.Y., Yin T., Guan G.H., Li Y. Astaxanthin biosynthesis is enhanced by high carotenogenic gene expression and decrease of fatty acids and ergosterol in a Phaffia rhodozyma mutant strain. Fems Yeast Res. 2011, 11:192-201.
    • (2011) Fems Yeast Res. , vol.11 , pp. 192-201
    • Miao, L.L.1    Chi, S.A.2    Tang, Y.C.3    Su, Z.Y.4    Yin, T.5    Guan, G.H.6    Li, Y.7
  • 23
    • 0034913742 scopus 로고    scopus 로고
    • First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli
    • Miller B., Oschinski C., Zimmer W. First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 2001, 213:483-487.
    • (2001) Planta , vol.213 , pp. 483-487
    • Miller, B.1    Oschinski, C.2    Zimmer, W.3
  • 24
    • 0037855780 scopus 로고    scopus 로고
    • Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator
    • Mosley A.L., Lakshmanan J., Aryal B.K., Ozcan S. Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator. J. Biol. Chem. 2003, 278:10322-10327.
    • (2003) J. Biol. Chem. , vol.278 , pp. 10322-10327
    • Mosley, A.L.1    Lakshmanan, J.2    Aryal, B.K.3    Ozcan, S.4
  • 25
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. R 2008, 72:379-412.
    • (2008) Microbiol. Mol. Biol. R , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 26
    • 34147103345 scopus 로고    scopus 로고
    • Monoterpenoid biosynthesis in Saccharomyces cerevisiae
    • Oswald M., Fischer M., Dirninger N., Karst F. Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res. 2007, 7:413-421.
    • (2007) FEMS Yeast Res. , vol.7 , pp. 413-421
    • Oswald, M.1    Fischer, M.2    Dirninger, N.3    Karst, F.4
  • 27
    • 0037173045 scopus 로고    scopus 로고
    • Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein
    • Peng G., Hopper J.E. Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:8548-8553.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 8548-8553
    • Peng, G.1    Hopper, J.E.2
  • 28
    • 18844390000 scopus 로고    scopus 로고
    • Gal80 dimerization and the yeast GAL gene switch
    • Pilauri V., Bewley M., Diep C., Hopper J. Gal80 dimerization and the yeast GAL gene switch. Genetics 2005, 169:1903-1914.
    • (2005) Genetics , vol.169 , pp. 1903-1914
    • Pilauri, V.1    Bewley, M.2    Diep, C.3    Hopper, J.4
  • 29
    • 33847309176 scopus 로고    scopus 로고
    • Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli
    • Pitera D.J., Paddon C.J., Newman J.D., Keasling J.D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng. 2007, 9:193-207.
    • (2007) Metab. Eng. , vol.9 , pp. 193-207
    • Pitera, D.J.1    Paddon, C.J.2    Newman, J.D.3    Keasling, J.D.4
  • 30
    • 84888771270 scopus 로고    scopus 로고
    • Improving carotenoids production in yeast via adaptive laboratory evolution
    • Reyes L.H., Gomez J.M., Kao K.C. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 2014, 21:26-33.
    • (2014) Metab. Eng. , vol.21 , pp. 26-33
    • Reyes, L.H.1    Gomez, J.M.2    Kao, K.C.3
  • 32
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba Y., Paradise E.M., Kirby J., Ro D.K., Keasling J.D. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 2007, 9:160-168.
    • (2007) Metab. Eng. , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.K.4    Keasling, J.D.5
  • 33
    • 0031843028 scopus 로고    scopus 로고
    • Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway
    • Shimada H., Kondo K., Fraser P.D., Miura Y., Saito T., Misawa N. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl. Environ. Microb. 1998, 64:2676-2680.
    • (1998) Appl. Environ. Microb. , vol.64 , pp. 2676-2680
    • Shimada, H.1    Kondo, K.2    Fraser, P.D.3    Miura, Y.4    Saito, T.5    Misawa, N.6
  • 34
    • 34548596453 scopus 로고    scopus 로고
    • Effect of two ergosterol biosynthesis inhibitors on lycopene production by Blakeslea trispora
    • Sun Y., Yuan Q.P., Vriesekoop F. Effect of two ergosterol biosynthesis inhibitors on lycopene production by Blakeslea trispora. Process Biochem. 2007, 42:1460-1464.
    • (2007) Process Biochem. , vol.42 , pp. 1460-1464
    • Sun, Y.1    Yuan, Q.P.2    Vriesekoop, F.3
  • 35
    • 0030994977 scopus 로고    scopus 로고
    • Polyprenol formation in the yeast Saccharomyces cerevisiae: effect of farnesyl diphosphate synthase overexpression
    • Szkopinska A., Grabinska K., Delourme D., Karst F., Rytka J., Palamarczyk G. Polyprenol formation in the yeast Saccharomyces cerevisiae: effect of farnesyl diphosphate synthase overexpression. J. Lipid Res. 1997, 38:962-968.
    • (1997) J. Lipid Res. , vol.38 , pp. 962-968
    • Szkopinska, A.1    Grabinska, K.2    Delourme, D.3    Karst, F.4    Rytka, J.5    Palamarczyk, G.6
  • 39
    • 79953268907 scopus 로고    scopus 로고
    • Enhancing isoprene production by genetic modification of the 1-Deoxy-D-xylulose-5-phosphate pathway in Bacillus subtilis
    • Xue J.F., Ahring B.K. Enhancing isoprene production by genetic modification of the 1-Deoxy-D-xylulose-5-phosphate pathway in Bacillus subtilis. Appl. Environ. Microb. 2011, 77:2399-2405.
    • (2011) Appl. Environ. Microb. , vol.77 , pp. 2399-2405
    • Xue, J.F.1    Ahring, B.K.2
  • 40
    • 84860487970 scopus 로고    scopus 로고
    • Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli
    • Yang J.M., Xian M., Su S.Z., Zhao G., Nie Q.J., Jiang X.L., Zheng Y.N., Liu W. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. Plos One 2012, 7.
    • (2012) Plos One , pp. 7
    • Yang, J.M.1    Xian, M.2    Su, S.Z.3    Zhao, G.4    Nie, Q.J.5    Jiang, X.L.6    Zheng, Y.N.7    Liu, W.8
  • 41
    • 79958232375 scopus 로고    scopus 로고
    • Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway
    • Zhao Y.R., Yang J.M., Qin B., Li Y.H., Sun Y.Z., Su S.Z., Xian M. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl. Microbiol. Biot. 2011, 90:1915-1922.
    • (2011) Appl. Microbiol. Biot. , vol.90 , pp. 1915-1922
    • Zhao, Y.R.1    Yang, J.M.2    Qin, B.3    Li, Y.H.4    Sun, Y.Z.5    Su, S.Z.6    Xian, M.7
  • 42
    • 84868471914 scopus 로고    scopus 로고
    • Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria)
    • Zurbriggen A., Kirst H., Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). Bioenerg. Res. 2012, 5:814-828.
    • (2012) Bioenerg. Res. , vol.5 , pp. 814-828
    • Zurbriggen, A.1    Kirst, H.2    Melis, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.