메뉴 건너뛰기




Volumn 517, Issue , 2014, Pages 691-699

A gene-wavelet model for long lead time drought forecasting

Author keywords

Drought forecasting; El Nin tild; o Southern Oscillation; Hydrologic models; Linear genetic programing; Palmer's modified drought index; Wavelet transform

Indexed keywords

ATMOSPHERIC PRESSURE; CLIMATE CHANGE; CLIMATE MODELS; GENES; SENSITIVITY ANALYSIS; WATER CONSERVATION; WATER RESOURCES; WAVELET TRANSFORMS; WEATHER FORECASTING; FORECASTING; MATHEMATICAL TRANSFORMATIONS;

EID: 84904863365     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2014.06.012     Document Type: Article
Times cited : (86)

References (57)
  • 1
    • 39849091610 scopus 로고    scopus 로고
    • A genetic programming approach to suspended sediment modelling
    • Aytek A., Kisi O. A genetic programming approach to suspended sediment modelling. J. Hydrol. 2008, 351(3-4):288-298.
    • (2008) J. Hydrol. , vol.351 , Issue.3-4 , pp. 288-298
    • Aytek, A.1    Kisi, O.2
  • 3
    • 0003479517 scopus 로고    scopus 로고
    • Genetic programming-an introduction on the automatic evolution of computer programs and its application
    • dpunkt/Morgan Kaufmann: Heidelberg, San Francisco.
    • Banzhaf, W., Nordin, P., Keller, R. and Francone, F.D., 1998. Genetic programming-an introduction on the automatic evolution of computer programs and its application. dpunkt/Morgan Kaufmann: Heidelberg, San Francisco.
    • (1998)
    • Banzhaf, W.1    Nordin, P.2    Keller, R.3    Francone, F.D.4
  • 4
    • 47049097486 scopus 로고    scopus 로고
    • Toward long-lead operational forecasts of drought: an experimental study in the Murray-Darling River Basin
    • Barros A.P., Bowden G. Toward long-lead operational forecasts of drought: an experimental study in the Murray-Darling River Basin. J. Hydrol. 2008, 357(3-4):349-367.
    • (2008) J. Hydrol. , vol.357 , Issue.3-4 , pp. 349-367
    • Barros, A.P.1    Bowden, G.2
  • 5
    • 84888875654 scopus 로고    scopus 로고
    • Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression
    • Belayneh, A., Adamowski, J., 2012. Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl. Comput. Intell. Soft Comput. Article ID 794061, 13pages.
    • (2012) Appl. Comput. Intell. Soft Comput , pp. 13
    • Belayneh, A.1    Adamowski, J.2
  • 6
    • 84890235995 scopus 로고    scopus 로고
    • Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models
    • Belayneh A., Adamowski J., Khalil B., Ozga-Zielinski B. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. J. Hydrol. 2014, 508:418-429.
    • (2014) J. Hydrol. , vol.508 , pp. 418-429
    • Belayneh, A.1    Adamowski, J.2    Khalil, B.3    Ozga-Zielinski, B.4
  • 9
    • 84886301699 scopus 로고    scopus 로고
    • Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique
    • Danandeh Mehr A., Kahya E., Olyaie E. Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. J. Hydrol. 2013, 505:240-249.
    • (2013) J. Hydrol. , vol.505 , pp. 240-249
    • Danandeh Mehr, A.1    Kahya, E.2    Olyaie, E.3
  • 10
    • 84911986380 scopus 로고    scopus 로고
    • Successive-station monthly streamflow prediction using neuro-wavelet technique
    • in press.
    • Danandeh Mehr, A., Kahya, E., Bagheri, F., Deliktas, E. 2013b. Successive-station monthly streamflow prediction using neuro-wavelet technique. Earth Sci. Inform., doi: 10.1007/s12145-013-0141-3, in press.
    • (2013) Earth Sci. Inform.
    • Danandeh Mehr, A.1    Kahya, E.2    Bagheri, F.3    Deliktas, E.4
  • 11
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural networks for streamflow prediction
    • Dolling O.R., Varas E.A. Artificial neural networks for streamflow prediction. J. Hydraul. Res. 2002, 40(5):547-554.
    • (2002) J. Hydraul. Res. , vol.40 , Issue.5 , pp. 547-554
    • Dolling, O.R.1    Varas, E.A.2
  • 12
    • 0242415241 scopus 로고    scopus 로고
    • Prediction and modeling of the rainfall-runoff transformation of a typical urban basin using ANN and GP
    • Dorado J., Rabuñal J.R., Pazos A., Rivero D., Santos A., Puertas J. Prediction and modeling of the rainfall-runoff transformation of a typical urban basin using ANN and GP. Appl. Artif. Intell. 2003, 17:329-343.
    • (2003) Appl. Artif. Intell. , vol.17 , pp. 329-343
    • Dorado, J.1    Rabuñal, J.R.2    Pazos, A.3    Rivero, D.4    Santos, A.5    Puertas, J.6
  • 13
    • 0028667877 scopus 로고
    • The relationships between U.S. streamflows and La Nina events
    • Dracup J.A., Kahya E. The relationships between U.S. streamflows and La Nina events. Water Resour. Res. 1994, 30:2133-2141.
    • (1994) Water Resour. Res. , vol.30 , pp. 2133-2141
    • Dracup, J.A.1    Kahya, E.2
  • 14
    • 71149110298 scopus 로고    scopus 로고
    • Streamflow drought time series forecasting: a case study in a small watershed in North West Spain
    • Fernandez C., Vega J.A., Fonturbel T., Jimenez E. Streamflow drought time series forecasting: a case study in a small watershed in North West Spain. Stoch. Environ. Res. Risk Assess. 2009, 23:1063-1070.
    • (2009) Stoch. Environ. Res. Risk Assess. , vol.23 , pp. 1063-1070
    • Fernandez, C.1    Vega, J.A.2    Fonturbel, T.3    Jimenez, E.4
  • 16
    • 77950864370 scopus 로고    scopus 로고
    • Sea water level forecasting using genetic programming and artificial neural networks
    • Ghorbani M.A., Khatibi R., Aytek A., Makarynskyy O., Shiri J. Sea water level forecasting using genetic programming and artificial neural networks. Comput. Geosci. 2010, 36(5):620-627.
    • (2010) Comput. Geosci. , vol.36 , Issue.5 , pp. 620-627
    • Ghorbani, M.A.1    Khatibi, R.2    Aytek, A.3    Makarynskyy, O.4    Shiri, J.5
  • 17
    • 0036700088 scopus 로고    scopus 로고
    • A review of twentieth-century drought indices used in the United States
    • Heim Richard R. A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc. 2002, 83:1149-1165.
    • (2002) Bull. Amer. Meteor. Soc. , vol.83 , pp. 1149-1165
    • Heim, R.R.1
  • 18
    • 0027830161 scopus 로고
    • US streamflows patterns in relation to the El Nino/Southern Oscillation
    • Kahya E., Dracup J.A. US streamflows patterns in relation to the El Nino/Southern Oscillation. Water Resourc. Res. 1993, 29:2491-2503.
    • (1993) Water Resourc. Res. , vol.29 , pp. 2491-2503
    • Kahya, E.1    Dracup, J.A.2
  • 19
    • 0028325570 scopus 로고
    • The influence of type I EI Nino and La Nina events on streamflows in the Pacific Southwest of the United States
    • Kahya E., Dracup J.A. The influence of type I EI Nino and La Nina events on streamflows in the Pacific Southwest of the United States. J. Clim. 1994, 7(6):965-976.
    • (1994) J. Clim. , vol.7 , Issue.6 , pp. 965-976
    • Kahya, E.1    Dracup, J.A.2
  • 20
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T.W., Valdes J.B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 2003, 8(6):319-328.
    • (2003) J. Hydrol. Eng. , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.W.1    Valdes, J.B.2
  • 21
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kis¸i O¨. Stream flow forecasting using neuro-wavelet technique. Hydrol. Process. 2008, 22:4142-4152.
    • (2008) Hydrol. Process. , vol.22 , pp. 4142-4152
    • Kis¸i, O.1
  • 22
    • 77956821935 scopus 로고    scopus 로고
    • Evapotranspiration modeling using linear genetic programming technique
    • Kisi O., Guven A. Evapotranspiration modeling using linear genetic programming technique. J. Irrig. Drain. Eng. 2010, 136(10):715-723.
    • (2010) J. Irrig. Drain. Eng. , vol.136 , Issue.10 , pp. 715-723
    • Kisi, O.1    Guven, A.2
  • 24
    • 28444499418 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 1. A review of concepts
    • Labat D. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2005, 314(1-4):275-288.
    • (2005) J. Hydrol. , vol.314 , Issue.1-4 , pp. 275-288
    • Labat, D.1
  • 25
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses
    • Labat D., Ababou R., Mangin A. Rainfall-runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol. 2000, 238:149-178.
    • (2000) J. Hydrol. , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 26
    • 0031434332 scopus 로고    scopus 로고
    • An early warning system for drought management using the Palmer drought index
    • Lohani V.K., Loganathan G.V. An early warning system for drought management using the Palmer drought index. J. Am. Water Res. Assoc. 1997, 33(6):1375-1386.
    • (1997) J. Am. Water Res. Assoc. , vol.33 , Issue.6 , pp. 1375-1386
    • Lohani, V.K.1    Loganathan, G.V.2
  • 29
    • 33747853860 scopus 로고    scopus 로고
    • Drought forecasting using feed forward recursive neural network
    • Mishra A.K., Desai V.R. Drought forecasting using feed forward recursive neural network. Ecol. Model. 2006, 198:127-138.
    • (2006) Ecol. Model. , vol.198 , pp. 127-138
    • Mishra, A.K.1    Desai, V.R.2
  • 30
    • 77956191461 scopus 로고    scopus 로고
    • A review of drought concepts
    • Mishra A.K., Singh V.P. A review of drought concepts. J. Hydrol. 2010, 391(1-2):202-216.
    • (2010) J. Hydrol. , vol.391 , Issue.1-2 , pp. 202-216
    • Mishra, A.K.1    Singh, V.P.2
  • 31
    • 79955881885 scopus 로고    scopus 로고
    • Drought modelling - a review
    • Mishra A.K., Singh V.P. Drought modelling - a review. J. Hydrol. 2011, 403:157-175.
    • (2011) J. Hydrol. , vol.403 , pp. 157-175
    • Mishra, A.K.1    Singh, V.P.2
  • 32
    • 36348930024 scopus 로고    scopus 로고
    • Drought forecasting using a hybrid stochastic and neural network model
    • Mishra A.K., Desai V.R., Singh V.P. Drought forecasting using a hybrid stochastic and neural network model. J. Hydrol. Eng. 2007, 12(6):626-638.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.6 , pp. 626-638
    • Mishra, A.K.1    Desai, V.R.2    Singh, V.P.3
  • 33
    • 33846093833 scopus 로고    scopus 로고
    • Streamflow drought time series forecasting
    • Modarres R. Streamflow drought time series forecasting. Stoch. Environ. Res. Risk Assess. 2007, 15(21):223-233.
    • (2007) Stoch. Environ. Res. Risk Assess. , vol.15 , Issue.21 , pp. 223-233
    • Modarres, R.1
  • 34
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • Morid S., Smakhtin V., Bagherzadeh K. Drought forecasting using artificial neural networks and time series of drought indices. Int. J. Climatol. 2007, 27(15):2103-2111.
    • (2007) Int. J. Climatol. , vol.27 , Issue.15 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 35
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22(3):466-472.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.3 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 36
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN wavelet approach for rainfall-runoff modelling
    • Nourani V., Komasi M., Mano A. A multivariate ANN wavelet approach for rainfall-runoff modelling. Water Resour. Manage 2009, 23:2877-2894.
    • (2009) Water Resour. Manage , vol.23 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 37
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani V., Kisi O., Komasi M. Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol. 2011, 402:41-59.
    • (2011) J. Hydrol. , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 38
    • 84862139051 scopus 로고    scopus 로고
    • Hybrid wavelet-genetic programming approach to optimize ANN modelling of rainfall-runoff process
    • Nourani V., Komasi M., Alami M.T. Hybrid wavelet-genetic programming approach to optimize ANN modelling of rainfall-runoff process. J. Hydrol. Eng. 2012, 7(6):724-741.
    • (2012) J. Hydrol. Eng. , vol.7 , Issue.6 , pp. 724-741
    • Nourani, V.1    Komasi, M.2    Alami, M.T.3
  • 39
    • 84871025948 scopus 로고    scopus 로고
    • Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling
    • Nourani V., Hosseini Baghanam A., Adamowski J., Gebremichael M. Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling. J. Hydrol. 2013, 476:228-243.
    • (2013) J. Hydrol. , vol.476 , pp. 228-243
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Gebremichael, M.4
  • 40
    • 84876399717 scopus 로고    scopus 로고
    • Geomorphology-based genetic programming approach for rainfall-runoff modeling
    • Nourani V., Komasi M., Alami M.T. Geomorphology-based genetic programming approach for rainfall-runoff modeling. J. Hydroinform. 2013, 15(2):427-445.
    • (2013) J. Hydroinform. , vol.15 , Issue.2 , pp. 427-445
    • Nourani, V.1    Komasi, M.2    Alami, M.T.3
  • 41
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid Wavelet-Artificial Intelligence models in hydrology
    • Nourani, V., Hosseini Baghanam, A., Adamowski, J., Kisi, O., 2014. Applications of hybrid Wavelet-Artificial Intelligence models in hydrology. A review. J. Hydrol. doi: http://dx.doi.org/10.1016/j.jhydrol.2014.03.057.
    • (2014) A review. J. Hydrol
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Kisi, O.4
  • 42
    • 84872271722 scopus 로고    scopus 로고
    • Seepage velocities derived from thermal records using wavelet analysis
    • Onderka M., Banzhaf S., Scheytt T., Krein A. Seepage velocities derived from thermal records using wavelet analysis. J. Hydrol. 2013, 479:64-74.
    • (2013) J. Hydrol. , vol.479 , pp. 64-74
    • Onderka, M.1    Banzhaf, S.2    Scheytt, T.3    Krein, A.4
  • 43
    • 77957260567 scopus 로고    scopus 로고
    • Significant wave height forecasting using wavelet fuzzy logic approach
    • O¨zger M. Significant wave height forecasting using wavelet fuzzy logic approach. Ocean Eng. 2010, 37(16):1443-1451.
    • (2010) Ocean Eng. , vol.37 , Issue.16 , pp. 1443-1451
    • O¨zger, M.1
  • 44
    • 57649244389 scopus 로고    scopus 로고
    • Low frequency drought variability associated with climate indices
    • O¨zger M., Mishra A.K., Singh V.P. Low frequency drought variability associated with climate indices. J. Hydrol. 2009, 364(1-2):152-162.
    • (2009) J. Hydrol. , vol.364 , Issue.1-2 , pp. 152-162
    • O¨zger, M.1    Mishra, A.K.2    Singh, V.P.3
  • 45
    • 84858322934 scopus 로고    scopus 로고
    • Long lead time drought forecasting using a wavelet and fuzzy logic combination model
    • O¨zger M., Mishra A.K., Singh V.P. Long lead time drought forecasting using a wavelet and fuzzy logic combination model. J. Hydrometeorol. 2012, 13:284-297.
    • (2012) J. Hydrometeorol. , vol.13 , pp. 284-297
    • O¨zger, M.1    Mishra, A.K.2    Singh, V.P.3
  • 46
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T., Kis¸i O¨. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 2007, 342(1-2):199-212.
    • (2007) J. Hydrol. , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kis¸i, O.2
  • 48
    • 0029662898 scopus 로고    scopus 로고
    • Drought and regional hydrologic variation in the United States: associations with the El Niño-Southern Oscillation
    • Piechota T.C., Dracup J.A. Drought and regional hydrologic variation in the United States: associations with the El Niño-Southern Oscillation. Water Resour. Res. 1996, 32(5):1359-1373.
    • (1996) Water Resour. Res. , vol.32 , Issue.5 , pp. 1359-1373
    • Piechota, T.C.1    Dracup, J.A.2
  • 49
    • 0033536877 scopus 로고    scopus 로고
    • Application of fuzzy rule-based modeling technique to regional drought
    • Pongracz R., Bogardi B., Duckstein L. Application of fuzzy rule-based modeling technique to regional drought. J. Hydrol. 1999, 224:100-114.
    • (1999) J. Hydrol. , vol.224 , pp. 100-114
    • Pongracz, R.1    Bogardi, B.2    Duckstein, L.3
  • 50
    • 65549161963 scopus 로고    scopus 로고
    • A Field Guide to Genetic Programming
    • Published via and freely available at (With contributions by J.R. Koza)
    • Poli, R., Langdon, W.B. and McPhee, N.F., 2008. A Field Guide to Genetic Programming. Published via and freely available at (With contributions by J.R. Koza). http://www.gp-field-guide.org.uk.
    • (2008)
    • Poli, R.1    Langdon, W.B.2    McPhee, N.F.3
  • 51
    • 33847065032 scopus 로고    scopus 로고
    • Determination of the unit hydrograph of a typical urban basin using genetic programming and artificial neural networks
    • Rabuñal J.R., Puertas J., Sua´rez J., Rivero D. Determination of the unit hydrograph of a typical urban basin using genetic programming and artificial neural networks. Hydrol. Process. 2007, 476-485.
    • (2007) Hydrol. Process. , pp. 476-485
    • Rabuñal, J.R.1    Puertas, J.2    Sua´rez, J.3    Rivero, D.4
  • 52
    • 0034670339 scopus 로고    scopus 로고
    • Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the twentieth century
    • Rajagopalan B., Cook E., Lall U., Ray B.K. Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the twentieth century. J. Clim. 2000, 13:4244-4255.
    • (2000) J. Clim. , vol.13 , pp. 4244-4255
    • Rajagopalan, B.1    Cook, E.2    Lall, U.3    Ray, B.K.4
  • 53
    • 0021373406 scopus 로고
    • Analysis and modeling of palmer's drought index series
    • Rao A.R., Padmanabhan G. Analysis and modeling of palmer's drought index series. J. Hydrol. 1984, 68:211-229.
    • (1984) J. Hydrol. , vol.68 , pp. 211-229
    • Rao, A.R.1    Padmanabhan, G.2
  • 54
    • 0025573373 scopus 로고
    • Critical drought analysis by second order Markov chain
    • Sen Z. Critical drought analysis by second order Markov chain. J. Hydrol. 1990, 120:183-202.
    • (1990) J. Hydrol. , vol.120 , pp. 183-202
    • Sen, Z.1
  • 55
    • 3042810797 scopus 로고    scopus 로고
    • Prediction of monsoon rainfall and river discharge on 15-30-day time scales
    • Webster P.J., Hoyos C.D. Prediction of monsoon rainfall and river discharge on 15-30-day time scales. Bull. Am. Meteorol. Soc. 2004, 85(11):1745-1765.
    • (2004) Bull. Am. Meteorol. Soc. , vol.85 , Issue.11 , pp. 1745-1765
    • Webster, P.J.1    Hoyos, C.D.2
  • 56
    • 0035105632 scopus 로고    scopus 로고
    • Modelling rainfall-runoff using genetic programming
    • Whigham P.A., Crapper P.F. Modelling rainfall-runoff using genetic programming. Math. Comput. Model. 2001, 33:707-721.
    • (2001) Math. Comput. Model. , vol.33 , pp. 707-721
    • Whigham, P.A.1    Crapper, P.F.2
  • 57
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu C.L., Chau K.W., Li Y.S. Methods to improve neural network performance in daily flows prediction. J. Hydrol. 2009, 372:80-93.
    • (2009) J. Hydrol. , vol.372 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.