메뉴 건너뛰기




Volumn 15, Issue 2, 2013, Pages 427-445

Geomorphology-based genetic programming approach for rainfall-runoff modeling

Author keywords

Eel River watershed; Genetic programming; Geomorphology; Rainfall runoff modeling; Spatiotemporal modeling

Indexed keywords


EID: 84876399717     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2012.113     Document Type: Article
Times cited : (21)

References (51)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000 Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng. 5 (2), 124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 2
    • 39849091610 scopus 로고    scopus 로고
    • A genetic programming approach to suspended sediment modeling
    • Aytek, A. & Kisi, O. 2008 A genetic programming approach to suspended sediment modeling. J. Hydrol. 351, 288-298.
    • (2008) J. Hydrol. , vol.351 , pp. 288-298
    • Aytek, A.1    Kisi, O.2
  • 3
    • 84864995124 scopus 로고    scopus 로고
    • Gene-expression programming to predict scour at a bridge abutment
    • Azamathulla, H. Md. 2012 Gene-expression programming to predict scour at a bridge abutment. J. Hydroinf. 14 (2), 324-333.
    • (2012) J. Hydroinf. , vol.14 , Issue.2 , pp. 324-333
    • Azamathulla, H.Md.1
  • 4
    • 0036997582 scopus 로고    scopus 로고
    • Rainfall-runoff modelling based on genetic programming
    • Babovic, V. & Keijzer, M. 2002 Rainfall-runoff modelling based on genetic programming. Nordic Hydrol. 33 (5), 331-334.
    • (2002) Nordic Hydrol. , vol.33 , Issue.5 , pp. 331-334
    • Babovic, V.1    Keijzer, M.2
  • 6
    • 0018441920 scopus 로고
    • A physically based, variable contributing area model of basin hydrology
    • Beven, K. J. & Kirkby, M. J. 1979 A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24 (1,3), 43-69.
    • (1979) Hydrol. Sci. J. , vol.24 , Issue.1-3 , pp. 43-69
    • Beven, K.J.1    Kirkby, M.J.2
  • 7
    • 0345358243 scopus 로고    scopus 로고
    • A rainfall-runoff model using genetic programming
    • Report No. 97/03, School of Engineering, University of Exeter, Exeter, UK
    • Cousin, N. & Savic, D. A. 1997 A rainfall-runoff model using genetic programming. Centre for Systems and Control Engineering. Report No. 97/03, School of Engineering, University of Exeter, Exeter, UK, 70 pp.
    • (1997) Centre for Systems and Control Engineering.
    • Cousin, N.1    Savic, D.A.2
  • 8
    • 84858142021 scopus 로고    scopus 로고
    • Validation of an ANN flow prediction model using a multi-station cluster
    • Demirel, M. C, Booij, M. J. & Kahya, E. 2011 Validation of an ANN flow prediction model using a multi-station cluster. J. Hydrol. Eng. 16 (2), 262-271.
    • (2011) J. Hydrol. Eng. , vol.16 , Issue.2 , pp. 262-271
    • Demirel, M.C.1    Booij, M.J.2    Kahya, E.3
  • 9
    • 0242415241 scopus 로고    scopus 로고
    • Prediction and modelling of the rainfall-runoff transformation of a typical urban basin using ANN and GP
    • Dorado, J., Rabunal, J. R., Pazos, A., Rivero, D., Santos, A. & Puertas, J. 2003 Prediction and modelling of the rainfall-runoff transformation of a typical urban basin using ANN and GP. Appl. Artif. Intell. 17 (4), 329-343.
    • (2003) Appl. Artif. Intell. , vol.17 , Issue.4 , pp. 329-343
    • Dorado, J.1    Rabunal, J.R.2    Pazos, A.3    Rivero, D.4    Santos, A.5    Puertas, J.6
  • 11
    • 68049122277 scopus 로고    scopus 로고
    • A genetic programming system for time series prediction and its application to El Niño forecast
    • Falco, D., Cioppa, A. D. & Tarantino, E. 2005 A genetic programming system for time series prediction and its application to El Niño forecast. Appl. Soft Comput. 32, 151-162.
    • (2005) Appl. Soft Comput. , vol.32 , pp. 151-162
    • Falco, D.1    Cioppa, A.D.2    Tarantino, E.3
  • 12
    • 33747405169 scopus 로고    scopus 로고
    • Comparison of three alternative ANN designs for monthly rainfall-runoff simulation
    • Garbrecht, J. D. 2006 Comparison of three alternative ANN designs for monthly rainfall-runoff simulation. J. Hydrol. Eng. 11 (5), 502-505.
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.5 , pp. 502-505
    • Garbrecht, J.D.1
  • 13
    • 32444435850 scopus 로고    scopus 로고
    • Using genetic programming to determine Chezy resistance coefficient in corrugated channels
    • Giustolisi, O. 2004 Using genetic programming to determine Chezy resistance coefficient in corrugated channels. J. Hydroinf. 6, 157-173.
    • (2004) J. Hydroinf. , vol.6 , pp. 157-173
    • Giustolisi, O.1
  • 14
    • 78751569704 scopus 로고    scopus 로고
    • Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming
    • Guven, A. & Kisi, O. 2011 Estimation of suspended sediment yield in natural rivers using machine-coded linear genetic programming. Water Resour. Manage. 25 (2), 691-704.
    • (2011) Water Resour. Manage. , vol.25 , Issue.2 , pp. 691-704
    • Guven, A.1    Kisi, O.2
  • 15
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall-runoff models
    • Jain, A., Sudheer, K P. & Srinivasulu, S. 2004 Identification of physical processes inherent in artificial neural network rainfall-runoff models. Hydrol. Process. 18, 571-581.
    • (2004) Hydrol. Process. , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 16
    • 31444453851 scopus 로고    scopus 로고
    • Comparative analysis of data-driven and GIS-based conceptual rainfall-runoff model
    • Jayawardena, A. W., Muttil, N. & Lee, J. H. W. 2006 Comparative analysis of data-driven and GIS-based conceptual rainfall-runoff model. J. Hydrol. Eng. 11 (1), 1-89.
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.1 , pp. 1-89
    • Jayawardena, A.W.1    Muttil, N.2    Lee, J.H.W.3
  • 17
    • 77955470793 scopus 로고    scopus 로고
    • A machine code-based genetic programming for suspended sediment concentration estimation
    • Kisi, O. & Guven, A. 2010 A machine code-based genetic programming for suspended sediment concentration estimation. Adv. Eng. Softw. 41 (7-8), 939-945.
    • (2010) Adv. Eng. Softw. , vol.41 , Issue.7-8 , pp. 939-945
    • Kisi, O.1    Guven, A.2
  • 19
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydro-climatic model validation
    • Legates, D. R. & McCabe Jr, G. J. 1999 Evaluating the use of goodness-of-fit measures in hydrologic and hydro-climatic model validation. Water Resour. Res. 35 (1), 233-241.
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe Jr., G.J.2
  • 20
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • Luk, K. C, Ball, J. E. & Sharma, A. 2001 An application of artificial neural networks for rainfall forecasting. Math. Comput. Modell. 33, 683-693.
    • (2001) Math. Comput. Modell. , vol.33 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 21
    • 40849130727 scopus 로고    scopus 로고
    • Short-term stream flow forecasting with global climate change implications - A comparative study between genetic programming and neural network models
    • Makkeasorn, A., Chang, N. B. & Zhou, X. 2008 Short-term stream flow forecasting with global climate change implications - a comparative study between genetic programming and neural network models. J. Hydrol. 352, 336-354.
    • (2008) J. Hydrol. , vol.352 , pp. 336-354
    • Makkeasorn, A.1    Chang, N.B.2    Zhou, X.3
  • 22
    • 78650507206 scopus 로고    scopus 로고
    • Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers
    • Mirbagheri, S. A., Nourani, V., Rajaee, T. & Alikhani, A. 2010 Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrol. Sci. J. 55 (7), 1175-1189.
    • (2010) Hydrol. Sci. J. , vol.55 , Issue.7 , pp. 1175-1189
    • Mirbagheri, S.A.1    Nourani, V.2    Rajaee, T.3    Alikhani, A.4
  • 23
    • 67650293317 scopus 로고    scopus 로고
    • Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed
    • Mutlu, E., Chaubey, I., Hexmoor, H. & Bajwa, S. G. 2008 Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol. Process. 22, 5097-5106.
    • (2008) Hydrol. Process. , vol.22 , pp. 5097-5106
    • Mutlu, E.1    Chaubey, I.2    Hexmoor, H.3    Bajwa, S.G.4
  • 24
    • 84876360270 scopus 로고    scopus 로고
    • Physically interpretable rainfall-runoff models using genetic programming
    • Singapore
    • Muttil, N. & Liong, S. Y. 2004 Physically interpretable rainfall-runoff models using genetic programming. 6th International Conference on Hydroinformatics, Singapore, pp. 1655-1662.
    • (2004) 6th International Conference on Hydroinformatics , pp. 1655-1662
    • Muttil, N.1    Liong, S.Y.2
  • 25
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I. A discussion of principles
    • Nash, J. E. & Sutcliffe, J. V. 1970 River flow forecasting through conceptual models part I. A discussion of principles. J. Hydrol. 10 (3), 282-290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 26
    • 77949584352 scopus 로고    scopus 로고
    • Reply to comment on An ANN-based model for spatiotemporal groundwater level forecasting
    • Nourani, V. 2009 Reply to comment on An ANN-based model for spatiotemporal groundwater level forecasting.' Hydrol. Process. 24 (3), 370-371.
    • (2009) Hydrol. Process. , vol.24 , Issue.3 , pp. 370-371
    • Nourani, V.1
  • 27
    • 77952374286 scopus 로고    scopus 로고
    • Integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment processes
    • Nourani, V. & Kalantari, O. 2010 Integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment processes. Environ. Eng. Sci. 27 (5), 411-422.
    • (2010) Environ. Eng. Sci. , vol.27 , Issue.5 , pp. 411-422
    • Nourani, V.1    Kalantari, O.2
  • 28
    • 34247205944 scopus 로고    scopus 로고
    • Liquid analog model for laboratory simulation of rainfall-runoff process
    • Nourani, V., Monadjemi, P. & Singh, V. P. 2007 Liquid analog model for laboratory simulation of rainfall-runoff process. J. Hydrol. Eng. 12 (3), 246-255.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.3 , pp. 246-255
    • Nourani, V.1    Monadjemi, P.2    Singh, V.P.3
  • 29
    • 67649122251 scopus 로고    scopus 로고
    • An ANN based model for spatiotemporal groundwater level forecasting
    • Nourani, V., Mogaddam, A. A. & Nadiri, A. O. 2008 An ANN based model for spatiotemporal groundwater level forecasting. Hydrol. Process. 22, 5054-5066.
    • (2008) Hydrol. Process. , vol.22 , pp. 5054-5066
    • Nourani, V.1    Mogaddam, A.A.2    Nadiri, A.O.3
  • 30
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani, V., Komasi, M. & Mano, A. 2009 A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage. 23, 2877-2894.
    • (2009) Water Resour. Manage. , vol.23 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 31
    • 79952309190 scopus 로고    scopus 로고
    • Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: A case study
    • Nourani, V., Ejlali, R. G & Alami, M. T. 2011a Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study. Environ. Eng. Sci. 28 (3), 217-228.
    • (2011) Environ. Eng. Sci. , vol.28 , Issue.3 , pp. 217-228
    • Nourani, V.1    Ejlali, R.G.2    Alami, M.T.3
  • 32
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani, V., Kisi, Ö. & Komasi, M. 2011b Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol. 402 (1-2), 41-59.
    • (2011) J. Hydrol. , vol.402 , Issue.1-2 , pp. 41-59
    • Nourani, V.1    Kisi, Ö.2    Komasi, M.3
  • 33
    • 84862139051 scopus 로고    scopus 로고
    • A hybrid wavelet-genetic programming approach to optimize ANN modelling of rainfall-runoff process
    • Nourani, V., Komasi, M. & Alami, M. T. 2012a A hybrid wavelet-genetic programming approach to optimize ANN modelling of rainfall-runoff process. J. Hydrol. Eng. 17(6), 724-741.
    • (2012) J. Hydrol. Eng. , vol.17 , Issue.6 , pp. 724-741
    • Nourani, V.1    Komasi, M.2    Alami, M.T.3
  • 35
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar, M. P., Kothyari, U. C. & Chaube, U. C 2004 Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 285, 96-113.
    • (2004) J. Hydrol. , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 37
    • 31744438288 scopus 로고    scopus 로고
    • Performance evaluation of ANN and geomorphology- based models for runoff and sediment yield prediction for a Canadian watershed
    • Sarangi, A., Madramootoo, C A, Enright, P., Prasher, S. O. & Patel, R. M. 2005 Performance evaluation of ANN and geomorphology- based models for runoff and sediment yield prediction for a Canadian watershed. Curr. Sci. 89 (12), 2022-2033.
    • (2005) Curr. Sci. , vol.89 , Issue.12 , pp. 2022-2033
    • Sarangi, A.1    Madramootoo, C.A.2    Enright, P.3    Prasher, S.O.4    Patel, R.M.5
  • 38
    • 0032804627 scopus 로고    scopus 로고
    • A genetic programming approach to rainfall-runoff modeling
    • Savic, D. A., Walters, G A. & Davidson, J. 1999 A genetic programming approach to rainfall-runoff modeling. Water Resour. Manage. 13, 219-231.
    • (1999) Water Resour. Manage. , vol.13 , pp. 219-231
    • Savic, D.A.1    Walters, G.A.2    Davidson, J.3
  • 39
    • 78650708318 scopus 로고    scopus 로고
    • Testing the structure of a hydrological model using genetic programming
    • Selle, B. & Muttil, N. 2011 Testing the structure of a hydrological model using genetic programming. J. Hydrol. 397 (1-2), 1-9.
    • (2011) J. Hydrol. , vol.397 , Issue.1-2 , pp. 1-9
    • Selle, B.1    Muttil, N.2
  • 40
    • 78651276209 scopus 로고    scopus 로고
    • Prediction of end-depth ratio in open channels using genetic programming
    • Sharifi, S., Sterling, M. & Knight, D. W. 2011 Prediction of end-depth ratio in open channels using genetic programming. J. Hydroinf. 13 (1), 36-48.
    • (2011) J. Hydroinf. , vol.13 , Issue.1 , pp. 36-48
    • Sharifi, S.1    Sterling, M.2    Knight, D.W.3
  • 42
    • 33846453985 scopus 로고    scopus 로고
    • Genetic programming model for forecast of short and noisy data
    • Sivapragasam, C, Vincent, P. & Vasudevan, G 2007 Genetic programming model for forecast of short and noisy data. Hydrol. Process. 21, 266-272.
    • (2007) Hydrol. Process. , vol.21 , pp. 266-272
    • Sivapragasam, C.1    Vincent, P.2    Vasudevan, G.3
  • 43
    • 80053455989 scopus 로고    scopus 로고
    • Comparative evaluation of genetic programming and neural network as potential surrogate models for coastal aquifer management
    • Sreekanth, J. & Datta, B. 2011 Comparative evaluation of genetic programming and neural network as potential surrogate models for coastal aquifer management. Water Resour. Manage. 25 (13), 3201-3218.
    • (2011) Water Resour. Manage. , vol.25 , Issue.13 , pp. 3201-3218
    • Sreekanth, J.1    Datta, B.2
  • 44
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K P., Gosain, A. K & Ramasastri, K S. 2000 A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 16 (6), 1325-1330.
    • (2000) Hydrol. Process. , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 45
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A. S. & Johnson, P. A. 1999 Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 4, 232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 46
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar, A. S. & Markus, M. 2000 Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 5 (2), 156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 47
    • 0035105632 scopus 로고    scopus 로고
    • Modeling rainfall-runoff using genetic programming
    • Whigham, P. A. & Crapper, P. F. 2001 Modeling rainfall-runoff using genetic programming. Math. Comput. Modell. 33, 707-721.
    • (2001) Math. Comput. Modell. , vol.33 , pp. 707-721
    • Whigham, P.A.1    Crapper, P.F.2
  • 48
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R L., Abrahart, R J. & Dawson, C. W. 2003 Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48 (2), 163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 49
    • 77950592655 scopus 로고    scopus 로고
    • Genetic programming for modelling long-term hydrological time series
    • Tianjin, China
    • Wang, W., Xu, D., Qiu, L. & Ma, J. 2009 Genetic programming for modelling long-term hydrological time series. Fifth International Conference, Natural Computation, Tianjin, China, 4, pp. 265-269.
    • (2009) Fifth International Conference, Natural Computation , vol.4 , pp. 265-269
    • Wang, W.1    Xu, D.2    Qiu, L.3    Ma, J.4
  • 50
    • 79955716244 scopus 로고    scopus 로고
    • Application of genetic programming to modeling pipe failures in water distribution systems
    • Xu, Q., Chen, Q. & Li, W. 2011 Application of genetic programming to modeling pipe failures in water distribution systems. J. Hydroinf. 13 (3), 419-428.
    • (2011) J. Hydroinf. , vol.13 , Issue.3 , pp. 419-428
    • Xu, Q.1    Chen, Q.2    Li, W.3
  • 51
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds
    • Zhang, B. & Govindaraju, R S. 2003 Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. J. Hydrol. 273, 18-34.
    • (2003) J. Hydrol. , vol.273 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.