메뉴 건너뛰기




Volumn 505, Issue , 2013, Pages 240-249

Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique

Author keywords

Data pre processing; Feed forward neural networks; Hydrologic models; Linear genetic programming; Streamflow prediction; Wavelet transform

Indexed keywords

ACCURATE PREDICTION; ARITHMETIC FUNCTIONS; DATA PREPROCESSING; HYDROLOGIC MODELS; HYDROLOGICAL PROCESS; LINEAR GENETIC PROGRAMMING; ROOT MEAN SQUARE ERRORS; STREAMFLOW PREDICTION;

EID: 84886301699     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2013.10.003     Document Type: Article
Times cited : (139)

References (42)
  • 2
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J., Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390:85-91.
    • (2010) J. Hydrol. , vol.390 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 3
    • 77949635027 scopus 로고    scopus 로고
    • 2008 Genetic programming approach for flood routing in natural channels. Hydrol. Process.
    • Alavi, A.H., Gandomi, A.H., Gandomi, M., Comment on Sivapragasam, C., Maheswaran, R., Venkatesh, V,. 2008. Genetic programming approach for flood routing in natural channels. Hydrol. Process. 24, 2010, pp. 798-799.
    • (2010) , vol.24 , pp. 798-799
    • Alavi, A.H.1    Gandomi, A.H.2    Gandomi, M.3    Sivapragasam, C.4    Maheswaran, R.5    Venkatesh, V.6
  • 4
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil F., Tape D. An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J. Environ. Eng. Sci. 2004, 3:121-128.
    • (2004) J. Environ. Eng. Sci. , vol.3 , pp. 121-128
    • Anctil, F.1    Tape, D.2
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • ASCE Task Committee Artificial neural networks in hydrology: hydrologic applications
    • ASCE Task Committee Artificial neural networks in hydrology: hydrologic applications. J. Hydrol. Eng. 2000, 5(2):124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 84886256740 scopus 로고    scopus 로고
    • Genetic programming-an introduction on the automatic evolution of computer programs and its application. dpunkt/Morgan Kaufmann: Heidelberg, San Francisco, 1998.
    • Banzhaf, W., Nordin, P., Keller, R., Francone, F.D., 1998. Genetic programming-an introduction on the automatic evolution of computer programs and its application. dpunkt/Morgan Kaufmann: Heidelberg, San Francisco, 1998.
    • (1998)
    • Banzhaf, W.1    Nordin, P.2    Keller, R.3    Francone, F.D.4
  • 7
    • 77952241177 scopus 로고    scopus 로고
    • Advances in ungauged streamflow prediction using artificial neural networks
    • Besaw L.E., Rizzo D.M., Bierman P.R., Hackett W.R. Advances in ungauged streamflow prediction using artificial neural networks. J. Hydrol. 2010, 386:27-37.
    • (2010) J. Hydrol. , vol.386 , pp. 27-37
    • Besaw, L.E.1    Rizzo, D.M.2    Bierman, P.R.3    Hackett, W.R.4
  • 9
    • 84867896968 scopus 로고    scopus 로고
    • Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin
    • Can I., Tosunogulu F., Kahya E. Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin. Turkey. Water Environ. J. 2012, 26:567-576.
    • (2012) Turkey. Water Environ. J. , vol.26 , pp. 567-576
    • Can, I.1    Tosunogulu, F.2    Kahya, E.3
  • 10
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural networks for streamflow prediction
    • Dolling O.R., Varas E.A. Artificial neural networks for streamflow prediction. J. Hydraul. Res. 2002, 40(5):547-554.
    • (2002) J. Hydraul. Res. , vol.40 , Issue.5 , pp. 547-554
    • Dolling, O.R.1    Varas, E.A.2
  • 11
    • 0242415241 scopus 로고    scopus 로고
    • Prediction and modeling of the rainfall-runoff transformation of a typical urban basin using ANN and GP
    • Dorado J., Rabunal J.R., Pazos A., Rivero D., Santos A., Puertas J. Prediction and modeling of the rainfall-runoff transformation of a typical urban basin using ANN and GP. Appl. Artif. Intell. 2003, 17:329-343.
    • (2003) Appl. Artif. Intell. , vol.17 , pp. 329-343
    • Dorado, J.1    Rabunal, J.R.2    Pazos, A.3    Rivero, D.4    Santos, A.5    Puertas, J.6
  • 12
    • 84886256741 scopus 로고    scopus 로고
    • DiscipulusTM software owner's manual, version 3.0 DRAFT. Machine Learning Technologies Inc., Littleton CO., USA, 1998.
    • Francone, F.D., 1998. DiscipulusTM software owner's manual, version 3.0 DRAFT. Machine Learning Technologies Inc., Littleton CO., USA, 1998.
    • (1998)
    • Francone, F.D.1
  • 13
    • 84855986175 scopus 로고    scopus 로고
    • A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems
    • Gandomi A.H., Alavi A.H. A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Comput. Appl. 2012, 21:171-187.
    • (2012) Neural Comput. Appl. , vol.21 , pp. 171-187
    • Gandomi, A.H.1    Alavi, A.H.2
  • 14
    • 77950864370 scopus 로고    scopus 로고
    • Sea water level forecasting using genetic programming and artificial neural networks
    • Ghorbani M., Khatibi R., Aytek A., Makarynskyy O. Sea water level forecasting using genetic programming and artificial neural networks. Comput. Geosci. UK 2010, 36(5):620-627.
    • (2010) Comput. Geosci. UK , vol.36 , Issue.5 , pp. 620-627
    • Ghorbani, M.1    Khatibi, R.2    Aytek, A.3    Makarynskyy, O.4
  • 15
    • 70349753109 scopus 로고    scopus 로고
    • Linear genetic programming for time-series modelling of daily flow rate
    • Guven A. Linear genetic programming for time-series modelling of daily flow rate. J. Earth Syst. Sci. 2009, 118(2):137-146.
    • (2009) J. Earth Syst. Sci. , vol.118 , Issue.2 , pp. 137-146
    • Guven, A.1
  • 16
    • 0033742371 scopus 로고    scopus 로고
    • Wavelet transform in power systems Part 1
    • Kim C.H., Aggarwal R. Wavelet transform in power systems Part 1. Power Eng. J. 2000, 14(2):81-87.
    • (2000) Power Eng. J. , vol.14 , Issue.2 , pp. 81-87
    • Kim, C.H.1    Aggarwal, R.2
  • 17
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi O., Cigizoglu H.K. Comparison of different ANN techniques in river flow prediction. Civ. Eng. Environ. Sys. 2007, 24(3):211-231.
    • (2007) Civ. Eng. Environ. Sys. , vol.24 , Issue.3 , pp. 211-231
    • Kisi, O.1    Cigizoglu, H.K.2
  • 18
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kisi O. Stream flow forecasting using neuro-wavelet technique. Hydrol. Process. 2008, 22:4142-4152.
    • (2008) Hydrol. Process. , vol.22 , pp. 4142-4152
    • Kisi, O.1
  • 20
    • 0030162087 scopus 로고    scopus 로고
    • Rainfall-runoff modelling of the Ouse basin, North Yorkshire: an application of a physically based distributed model
    • Kuchment L.S., Demidov V.N., Naden P.S., Cooper D.M., Broadhurst P. Rainfall-runoff modelling of the Ouse basin, North Yorkshire: an application of a physically based distributed model. J. Hydrol. 1996, 181(1-4):323-342.
    • (1996) J. Hydrol. , vol.181 , Issue.1-4 , pp. 323-342
    • Kuchment, L.S.1    Demidov, V.N.2    Naden, P.S.3    Cooper, D.M.4    Broadhurst, P.5
  • 21
    • 28444499418 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 1 - a review of concepts
    • Labat D. Recent advances in wavelet analyses: Part 1 - a review of concepts. J. Hydrol. (Amsterdam) 2005, 314(1-4):275-288.
    • (2005) J. Hydrol. (Amsterdam) , vol.314 , Issue.1-4 , pp. 275-288
    • Labat, D.1
  • 22
    • 78650509451 scopus 로고    scopus 로고
    • Comparison of data-driven modelling techniques for river flow forecasting
    • Londhe S., Charhate S. Comparison of data-driven modelling techniques for river flow forecasting. Hydrolog. Sci. J. 2010, 55(7):1163-1174.
    • (2010) Hydrolog. Sci. J. , vol.55 , Issue.7 , pp. 1163-1174
    • Londhe, S.1    Charhate, S.2
  • 24
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22(3):466-472.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.3 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 25
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN wavelet approach for rainfall-runoff modelling
    • Nourani V., Komasi M., Mano A. A multivariate ANN wavelet approach for rainfall-runoff modelling. Water Resour. Manage. 2009, 23:2877-2894.
    • (2009) Water Resour. Manage. , vol.23 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 26
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani V., Kisi O., Komasi M. Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol. 2011, 402:41-59.
    • (2011) J. Hydrol. , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 27
    • 84862139051 scopus 로고    scopus 로고
    • Hybrid wavelet-genetic programming approach to optimize ANN modelling of rainfall-runoff process
    • Nourani V., Komasi M., Alami M.T. Hybrid wavelet-genetic programming approach to optimize ANN modelling of rainfall-runoff process. J. Hydrol. Eng. 2012, 17(6):724-741.
    • (2012) J. Hydrol. Eng. , vol.17 , Issue.6 , pp. 724-741
    • Nourani, V.1    Komasi, M.2    Alami, M.T.3
  • 28
    • 84871025948 scopus 로고    scopus 로고
    • Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling
    • Nourani V., Hosseini Baghanam A., Adamowski J., Gebremichael M. Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling. J. Hydrol. 2013, 476:228-243.
    • (2013) J. Hydrol. , vol.476 , pp. 228-243
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Gebremichael, M.4
  • 29
    • 84872271722 scopus 로고    scopus 로고
    • Seepage velocities derived from thermal records using wavelet analysis
    • Onderka M., Banzhaf S., Scheytt T., Krein A. Seepage velocities derived from thermal records using wavelet analysis. J. Hydrol. 2013, 479:64-74.
    • (2013) J. Hydrol. , vol.479 , pp. 64-74
    • Onderka, M.1    Banzhaf, S.2    Scheytt, T.3    Krein, A.4
  • 30
    • 77957260567 scopus 로고    scopus 로고
    • Significant wave height forecasting using wavelet fuzzy logic approach
    • Ozger M. Significant wave height forecasting using wavelet fuzzy logic approach. Ocean Eng. 2010, 37:1443-1451.
    • (2010) Ocean Eng. , vol.37 , pp. 1443-1451
    • Ozger, M.1
  • 31
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T., Kisi O. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 2007, 342:199-212.
    • (2007) J. Hydrol. , vol.342 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 32
    • 84886256742 scopus 로고    scopus 로고
    • A field guide to genetic programming. < (published) and <(freely available). (with contributions by Koza, J.R.).
    • Poli, R., Langdon, W.B., McPhee, N.F., 2008. A field guide to genetic programming. < (published) and <(freely available). (with contributions by Koza, J.R.). http://www.gp-field-guide.org.uk.
    • (2008)
    • Poli, R.1    Langdon, W.B.2    McPhee, N.F.3
  • 34
    • 33847065032 scopus 로고    scopus 로고
    • Determination of the unit hydrograph of a typical urban basin using genetic programming and artificial neural networks
    • Rabunal J.R., Puertas J., Suarez J., Rivero D. Determination of the unit hydrograph of a typical urban basin using genetic programming and artificial neural networks. Hydrol. Process. 2007, 21:476-485.
    • (2007) Hydrol. Process. , vol.21 , pp. 476-485
    • Rabunal, J.R.1    Puertas, J.2    Suarez, J.3    Rivero, D.4
  • 35
    • 73249147931 scopus 로고    scopus 로고
    • Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model
    • Rajaee T., Mirbagheri S.A., Nourani V., Alikhani A. Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model. Int. J. Environ. Sci. Technol. 2010, 7(1):93-110.
    • (2010) Int. J. Environ. Sci. Technol. , vol.7 , Issue.1 , pp. 93-110
    • Rajaee, T.1    Mirbagheri, S.A.2    Nourani, V.3    Alikhani, A.4
  • 36
    • 84862663945 scopus 로고    scopus 로고
    • Multi-scale nonlinear model for monthly streamflow forecasting: a wavelet-based approach
    • Rathinasamy M., Khosa R. Multi-scale nonlinear model for monthly streamflow forecasting: a wavelet-based approach. J. Hydroinform. 2012, 14(2):424-442.
    • (2012) J. Hydroinform. , vol.14 , Issue.2 , pp. 424-442
    • Rathinasamy, M.1    Khosa, R.2
  • 37
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial network
    • Sajikumar N., Thandaveswara B.S. A non-linear rainfall-runoff model using an artificial network. J. Hydrol. 1999, 216(4):32-55.
    • (1999) J. Hydrol. , vol.216 , Issue.4 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 38
    • 40049084636 scopus 로고    scopus 로고
    • Genetic programming approach for flood routing in natural channels
    • Sivapragasam C., Maheswaran R., Veena V. Genetic programming approach for flood routing in natural channels. Hydrol. Process. 2008, 22:623-628.
    • (2008) Hydrol. Process. , vol.22 , pp. 623-628
    • Sivapragasam, C.1    Maheswaran, R.2    Veena, V.3
  • 39
    • 79955638432 scopus 로고    scopus 로고
    • Coupled simulation-optimization model for coastal aquifer management using genetic programming-based ensemble surrogate models and multiple-realization optimization
    • Sreekanth J., Datta B. Coupled simulation-optimization model for coastal aquifer management using genetic programming-based ensemble surrogate models and multiple-realization optimization. Water Resour. Res. 2011, 47:W04516.
    • (2011) Water Resour. Res. , vol.47
    • Sreekanth, J.1    Datta, B.2
  • 40
    • 84859955758 scopus 로고    scopus 로고
    • An evaluation model of artificial neural network to predict stable width in gravel bed rivers
    • Tahershamsi A., Majdzade Tabatabai M.R., Shirkhani R. An evaluation model of artificial neural network to predict stable width in gravel bed rivers. Int. J. Environ. Sci. Technol. 2012, 9:333-342.
    • (2012) Int. J. Environ. Sci. Technol. , vol.9 , pp. 333-342
    • Tahershamsi, A.1    Majdzade Tabatabai, M.R.2    Shirkhani, R.3
  • 41
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W.C., Chau K.W., Cheng C.T., Qiu L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374:294-306.
    • (2009) J. Hydrol. , vol.374 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 42
    • 0035105632 scopus 로고    scopus 로고
    • Modelling rainfall runoff using genetic programming
    • Whigham P.A., Crapper P.F. Modelling rainfall runoff using genetic programming. Math. Comput. Model. 2001, 33:707-721.
    • (2001) Math. Comput. Model. , vol.33 , pp. 707-721
    • Whigham, P.A.1    Crapper, P.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.