메뉴 건너뛰기




Volumn 118, Issue , 2013, Pages 225-236

Twin least squares support vector regression

Author keywords

Kernel method; Least squares; Support vector machine; Support vector regression

Indexed keywords

COMPUTATIONAL SPEED; EFFECTIVENESS AND EFFICIENCIES; GENERALIZATION PERFORMANCE; KERNEL METHODS; LARGE SCALE DATA SETS; LEAST SQUARE; LEAST SQUARES SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSION (SVR);

EID: 84881257396     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.03.005     Document Type: Article
Times cited : (50)

References (49)
  • 2
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V.N. Support-vector networks. Mach. Learn. 1995, 20(3):273-297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 4
    • 77958057076 scopus 로고    scopus 로고
    • Feature selection in the Laplacian support vector machine
    • Lee S., Park C., Koo J.-Y. Feature selection in the Laplacian support vector machine. Comput. Stat. Data Anal. 2011, 55(1):567-577.
    • (2011) Comput. Stat. Data Anal. , vol.55 , Issue.1 , pp. 567-577
    • Lee, S.1    Park, C.2    Koo, J.-Y.3
  • 5
    • 80052871516 scopus 로고    scopus 로고
    • Combined feature selection and cancer prognosis using support vector machine regression
    • Sun B.-Y., Zhu Z.-H., Li J., Linghu B. Combined feature selection and cancer prognosis using support vector machine regression. ACM Trans. Comput. Biol. Bioinformatics 2011, 8(6):1671-1677.
    • (2011) ACM Trans. Comput. Biol. Bioinformatics , vol.8 , Issue.6 , pp. 1671-1677
    • Sun, B.-Y.1    Zhu, Z.-H.2    Li, J.3    Linghu, B.4
  • 6
    • 84862744766 scopus 로고    scopus 로고
    • New feature selection method based on support vector machines for text categorisation
    • Xu Y., Wang H. New feature selection method based on support vector machines for text categorisation. Int. J. Data Anal. Tech. Strategies 2011, 3(1):1-20.
    • (2011) Int. J. Data Anal. Tech. Strategies , vol.3 , Issue.1 , pp. 1-20
    • Xu, Y.1    Wang, H.2
  • 9
    • 0036856978 scopus 로고    scopus 로고
    • Robust support vector regression networks for function approximation with outliers
    • Chuang C.-C., Su S.-F., Jeng J.-T., Hsiao C.-C. Robust support vector regression networks for function approximation with outliers. IEEE Trans. Neural Networks 2002, 13(6):1322-1330.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.6 , pp. 1322-1330
    • Chuang, C.-C.1    Su, S.-F.2    Jeng, J.-T.3    Hsiao, C.-C.4
  • 10
    • 22944487667 scopus 로고    scopus 로고
    • Experiments in value function approximation with sparse support vector regression
    • Jung T., Uthmann T. Experiments in value function approximation with sparse support vector regression. Lect. Notes Artif. Intell. 2004, 180-191.
    • (2004) Lect. Notes Artif. Intell. , pp. 180-191
    • Jung, T.1    Uthmann, T.2
  • 13
    • 0003773721 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization, Advances in Kernel Methods: Support Vector Machines
    • J.C. Platt, Fast training of support vector machines using sequential minimal optimization, Advances in Kernel Methods: Support Vector Machines, 1999, pp. 185-208.
    • (1999) , pp. 185-208
    • Platt, J.C.1
  • 16
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: support vector machines for large-scale regression problems
    • Collobert R., Bengio S. SVMTorch: support vector machines for large-scale regression problems. J. Mach. Learn. Res. 2001, 1(2):143-160.
    • (2001) J. Mach. Learn. Res. , vol.1 , Issue.2 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 18
    • 84881225513 scopus 로고    scopus 로고
    • RSVM: reduced support vector machines in: Proceedings of 2001 SIAM International Conference on Data Mining
    • Y.-J.L. Lee, O.L. Mangasarian, RSVM: reduced support vector machines in: Proceedings of 2001 SIAM International Conference on Data Mining, 2001.
    • (2001)
    • Lee, Y.-J.L.1    Mangasarian, O.L.2
  • 19
    • 0742321291 scopus 로고    scopus 로고
    • A study on reduced support vector machines
    • Lin K.M., Lin C.J. A study on reduced support vector machines. IEEE Trans. Neural Networks 2003, 14(6):1449-1459.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.6 , pp. 1449-1459
    • Lin, K.M.1    Lin, C.J.2
  • 21
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 23
    • 33644830072 scopus 로고    scopus 로고
    • Multisurface proximal support vector machine classification via generalized eigenvalues
    • Mangasarian O.L., Wild E.W. Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28(1):69-74.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.1 , pp. 69-74
    • Mangasarian, O.L.1    Wild, E.W.2
  • 24
    • 34047225880 scopus 로고    scopus 로고
    • Chandra Twin support vector machines for pattern classification
    • Jayadeva R., Khemchandani S., Chandra Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29(5):905-910.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.5 , pp. 905-910
    • Jayadeva, R.1    Khemchandani, S.2
  • 26
    • 67650482982 scopus 로고    scopus 로고
    • Optimal kernel selection in twin support vector machines
    • Khemchandani R., Jayadeva, Chandra S. Optimal kernel selection in twin support vector machines. Optim. Lett. 2009, 3(1):77-88.
    • (2009) Optim. Lett. , vol.3 , Issue.1 , pp. 77-88
    • Khemchandani, R.1    Jayadeva Chandra, S.2
  • 27
    • 57749189368 scopus 로고    scopus 로고
    • Nonparallel plane proximal classifier
    • Ghorai S., Mukherjee A., Dutta P.K. Nonparallel plane proximal classifier. Signal Process. 2009, 89(4):510-522.
    • (2009) Signal Process. , vol.89 , Issue.4 , pp. 510-522
    • Ghorai, S.1    Mukherjee, A.2    Dutta, P.K.3
  • 28
    • 48649097170 scopus 로고    scopus 로고
    • Application of smoothing technique on twin support vector machines
    • Kumar M.A., Gopal M. Application of smoothing technique on twin support vector machines. Pattern Recognition Lett. 2008, 29(13):1842-1848.
    • (2008) Pattern Recognition Lett. , vol.29 , Issue.13 , pp. 1842-1848
    • Kumar, M.A.1    Gopal, M.2
  • 29
    • 60249095678 scopus 로고    scopus 로고
    • Least squares twin support vector machines for pattern classification
    • Arun Kumar M., Gopal M. Least squares twin support vector machines for pattern classification. Expert Syst. Appl. 2009, 36(4):7535-7543.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 7535-7543
    • Arun Kumar, M.1    Gopal, M.2
  • 30
    • 84865559034 scopus 로고    scopus 로고
    • Weighted twin support vector machines with local information and its application
    • Ye Q., Zhao C., Gao S., Zheng H. Weighted twin support vector machines with local information and its application. Neural Netw. 2012, 35:31-39.
    • (2012) Neural Netw. , vol.35 , pp. 31-39
    • Ye, Q.1    Zhao, C.2    Gao, S.3    Zheng, H.4
  • 31
    • 84865661519 scopus 로고    scopus 로고
    • Laplacian twin support vector machine for semi-supervised classification
    • Qi Z., Tian Y., Shi Y. Laplacian twin support vector machine for semi-supervised classification. Neural Netw. 2012, 35:46-53.
    • (2012) Neural Netw. , vol.35 , pp. 46-53
    • Qi, Z.1    Tian, Y.2    Shi, Y.3
  • 32
    • 84859799805 scopus 로고    scopus 로고
    • A feature selection method for nonparallel plane support vector machine classification
    • Ye Q., Zhao C., Ye N., Zheng H., Chen X. A feature selection method for nonparallel plane support vector machine classification. Optim. Methods Software 2012, 27(3):431-443.
    • (2012) Optim. Methods Software , vol.27 , Issue.3 , pp. 431-443
    • Ye, Q.1    Zhao, C.2    Ye, N.3    Zheng, H.4    Chen, X.5
  • 33
    • 76849100708 scopus 로고    scopus 로고
    • TSVR: an efficient twin support vector machine for regression
    • Peng X. TSVR: an efficient twin support vector machine for regression. Neural Netw. 2010, 23(3):365-372.
    • (2010) Neural Netw. , vol.23 , Issue.3 , pp. 365-372
    • Peng, X.1
  • 34
    • 70649100043 scopus 로고    scopus 로고
    • New support vector algorithms with parametric insensitive/margin model
    • Hao P.-Y. New support vector algorithms with parametric insensitive/margin model. Neural Netw. 2010, 23(1):60-73.
    • (2010) Neural Netw. , vol.23 , Issue.1 , pp. 60-73
    • Hao, P.-Y.1
  • 35
    • 83955162266 scopus 로고    scopus 로고
    • Efficient twin parametric insensitive support vector regression model
    • Peng X. Efficient twin parametric insensitive support vector regression model. Neurocomputing 2012, 79:26-38.
    • (2012) Neurocomputing , vol.79 , pp. 26-38
    • Peng, X.1
  • 36
    • 84858159769 scopus 로고    scopus 로고
    • Smooth twin support vector regression
    • Chen X., Yang J., Liang J., Ye Q. Smooth twin support vector regression. Neural Comput. Appl. 2012, 21(3):505-513.
    • (2012) Neural Comput. Appl. , vol.21 , Issue.3 , pp. 505-513
    • Chen, X.1    Yang, J.2    Liang, J.3    Ye, Q.4
  • 37
    • 80055055460 scopus 로고    scopus 로고
    • Building sparse twin support vector machine classifiers in primal space
    • Peng X. Building sparse twin support vector machine classifiers in primal space. Inf. Sci. 2011, 181(18):3967-3980.
    • (2011) Inf. Sci. , vol.181 , Issue.18 , pp. 3967-3980
    • Peng, X.1
  • 38
    • 84861589024 scopus 로고    scopus 로고
    • A weighted twin support vector regression
    • Xu Y., Wang L. A weighted twin support vector regression. Knowl.-based Syst. 2012, 33:92-101.
    • (2012) Knowl.-based Syst. , vol.33 , pp. 92-101
    • Xu, Y.1    Wang, L.2
  • 41
    • 84857646348 scopus 로고    scopus 로고
    • Training twin support vector regression via linear programming
    • Zhong P., Xu Y., Zhao Y. Training twin support vector regression via linear programming. Neural Comput. Appl. 2012, 21(2):399-407.
    • (2012) Neural Comput. Appl. , vol.21 , Issue.2 , pp. 399-407
    • Zhong, P.1    Xu, Y.2    Zhao, Y.3
  • 42
    • 84878019198 scopus 로고    scopus 로고
    • On Lagrangian twin support vector regression
    • in press
    • S. Balasundaram, M. Tanveer, On Lagrangian twin support vector regression, Neural Comput. Appl., in press. http://dx.doi.org/10.1007/s00521-012-0971-9.
    • Neural Comput. Appl.
    • Balasundaram, S.1    Tanveer, M.2
  • 43
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: robustness and sparce approximation
    • Suykens J.A.K., De Brabanter J., Lukas L., Vandewalle J. Weighted least squares support vector machines: robustness and sparce approximation. Neurocomputing 2002, 48:85-105.
    • (2002) Neurocomputing , vol.48 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 45
    • 0037507242 scopus 로고    scopus 로고
    • Pruning error minimization in least squares support vector machines
    • De Kruif B.J., De Vries T.J.A. Pruning error minimization in least squares support vector machines. IEEE Trans. Neural Networks 2003, 14(3):696-702.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.3 , pp. 696-702
    • De Kruif, B.J.1    De Vries, T.J.A.2
  • 46
    • 34047118751 scopus 로고    scopus 로고
    • Comments on Pruning error minimization in least squares support vector machines
    • Kuh A., De W.P. Comments on Pruning error minimization in least squares support vector machines. IEEE Trans. Neural Networks 2007, 18(2):606-609.
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.2 , pp. 606-609
    • Kuh, A.1    De, W.P.2
  • 47
    • 34248636293 scopus 로고    scopus 로고
    • Fast sparse approximation for least squares support vector machine
    • Jiao L., Bo L., Wang L. Fast sparse approximation for least squares support vector machine. IEEE Trans. Neural Networks 2007, 18(3):685-697.
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.3 , pp. 685-697
    • Jiao, L.1    Bo, L.2    Wang, L.3
  • 48
    • 34147111649 scopus 로고    scopus 로고
    • Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
    • An S., Liu W., Venkatesh S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognition 2007, 40(8):2154-2162.
    • (2007) Pattern Recognition , vol.40 , Issue.8 , pp. 2154-2162
    • An, S.1    Liu, W.2    Venkatesh, S.3
  • 49
    • 77955419648 scopus 로고    scopus 로고
    • Particle swarm optimization aided orthogonal forward regression for unified data modeling
    • Chen S., Hong X., Harris C.J. Particle swarm optimization aided orthogonal forward regression for unified data modeling. IEEE Trans. Evol. Comput. 2010, 14(4):477-499.
    • (2010) IEEE Trans. Evol. Comput. , vol.14 , Issue.4 , pp. 477-499
    • Chen, S.1    Hong, X.2    Harris, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.