-
1
-
-
77957994377
-
Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming
-
Lee Y.S., Tong L.I. Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming. Knowledge-based Systems 2011, 24:66-72.
-
(2011)
Knowledge-based Systems
, vol.24
, pp. 66-72
-
-
Lee, Y.S.1
Tong, L.I.2
-
2
-
-
64749095804
-
Modeling and forecasting crude oil markets using ARCH-type models
-
Cheong C.W. Modeling and forecasting crude oil markets using ARCH-type models. Energy Policy 2009, 37:2346-2355.
-
(2009)
Energy Policy
, vol.37
, pp. 2346-2355
-
-
Cheong, C.W.1
-
3
-
-
70449528756
-
Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm
-
Lee C.M., Ko C.N. Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm. Neurocomputing 2009, 73:449-460.
-
(2009)
Neurocomputing
, vol.73
, pp. 449-460
-
-
Lee, C.M.1
Ko, C.N.2
-
4
-
-
0242351905
-
Financial time series forecasting using support vector machines
-
Kim K. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55:307-319.
-
(2003)
Neurocomputing
, vol.55
, pp. 307-319
-
-
Kim, K.1
-
5
-
-
0000860595
-
Neural network models for time series forecasts
-
Hill T., O'Connor M., Remus W. Neural network models for time series forecasts. Management Science 1996, 42:1082-1092.
-
(1996)
Management Science
, vol.42
, pp. 1082-1092
-
-
Hill, T.1
O'Connor, M.2
Remus, W.3
-
6
-
-
48049095703
-
Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
-
Yu L.A., Wang S.Y., Lai K.K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Economics 2008, 30:2623-2635.
-
(2008)
Energy Economics
, vol.30
, pp. 2623-2635
-
-
Yu, L.A.1
Wang, S.Y.2
Lai, K.K.3
-
7
-
-
5444236478
-
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
-
Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 1998, 454:903-995.
-
(1998)
Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences
, vol.454
, pp. 903-995
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.C.4
Shih, H.H.5
Zheng, Q.6
-
8
-
-
77249162115
-
Forecasting demand of commodities after natural disasters
-
Xu X., Qi Y., Hua Z. Forecasting demand of commodities after natural disasters. Expert Systems with Applications 2010, 37:4313-4317.
-
(2010)
Expert Systems with Applications
, vol.37
, pp. 4313-4317
-
-
Xu, X.1
Qi, Y.2
Hua, Z.3
-
9
-
-
84155186340
-
Forecasting tourism demand based on empirical mode decomposition and neural network
-
Chen C.F., Lai M.C., Yeh C.C. Forecasting tourism demand based on empirical mode decomposition and neural network. Knowledge-based Systems 2012, 26:281-287.
-
(2012)
Knowledge-based Systems
, vol.26
, pp. 281-287
-
-
Chen, C.F.1
Lai, M.C.2
Yeh, C.C.3
-
10
-
-
80155154044
-
Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
-
Wei Y., Chen M.C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transportation Research Part C: Emerging Technologies 2012, 21:148-162.
-
(2012)
Transportation Research Part C: Emerging Technologies
, vol.21
, pp. 148-162
-
-
Wei, Y.1
Chen, M.C.2
-
11
-
-
79961127156
-
Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
-
Guo Z., Zhao W., Lu H., Wang J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy 2012, 37:241-249.
-
(2012)
Renewable Energy
, vol.37
, pp. 241-249
-
-
Guo, Z.1
Zhao, W.2
Lu, H.3
Wang, J.4
-
12
-
-
84858001572
-
A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
-
Tang L., Yu L., Wang S., Li J., Wang S. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. ApEn 2012, 93:432-443.
-
(2012)
ApEn
, vol.93
, pp. 432-443
-
-
Tang, L.1
Yu, L.2
Wang, S.3
Li, J.4
Wang, S.5
-
13
-
-
79955740028
-
Short-term electricity price forecast based on the improved hybrid model
-
Dong Y., Wang J., Jiang H., Wu J. Short-term electricity price forecast based on the improved hybrid model. Energy Conversion Management 2011, 52:2987-2995.
-
(2011)
Energy Conversion Management
, vol.52
, pp. 2987-2995
-
-
Dong, Y.1
Wang, J.2
Jiang, H.3
Wu, J.4
-
14
-
-
80051585160
-
Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: an empirical examination
-
Napolitano G., Serinaldi F., See L. Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: an empirical examination. Journal of Hydrology 2011, 406:199-214.
-
(2011)
Journal of Hydrology
, vol.406
, pp. 199-214
-
-
Napolitano, G.1
Serinaldi, F.2
See, L.3
-
15
-
-
0034948005
-
Boundary-processing-technique in EMD method and Hilbert transform
-
Deng Y., Wang W., Qian C., Wang Z., Dai D. Boundary-processing-technique in EMD method and Hilbert transform. Chinese Sciene Bulletin 2001, 46:954-960.
-
(2001)
Chinese Sciene Bulletin
, vol.46
, pp. 954-960
-
-
Deng, Y.1
Wang, W.2
Qian, C.3
Wang, Z.4
Dai, D.5
-
16
-
-
3042694358
-
11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method
-
Coughlin K., Tung K.K. 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method. Advances in Space Research 2004, 34:323-329.
-
(2004)
Advances in Space Research
, vol.34
, pp. 323-329
-
-
Coughlin, K.1
Tung, K.K.2
-
17
-
-
84885860093
-
-
G. Rilling, P. Flandrin, P. Gonçalvés, On empirical mode decomposition and its algorithms, in: IEEE-EURASIP Workshop on Nonlinear signal and Image Processing, 2003, pp. 1-5.
-
G. Rilling, P. Flandrin, P. Gonçalvés, On empirical mode decomposition and its algorithms, in: IEEE-EURASIP Workshop on Nonlinear signal and Image Processing, 2003, pp. 1-5.
-
-
-
-
18
-
-
44649110490
-
On the HHT, its problems, and some solutions
-
Rato R., Ortigueira M., Batista A. On the HHT, its problems, and some solutions. Mechanical Systems and Signal Processing 2008, 22:1374-1394.
-
(2008)
Mechanical Systems and Signal Processing
, vol.22
, pp. 1374-1394
-
-
Rato, R.1
Ortigueira, M.2
Batista, A.3
-
19
-
-
4143084984
-
Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves
-
Dätig M., Schlurmann T. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves. Ocean Engineering 2004, 31:1783-1834.
-
(2004)
Ocean Engineering
, vol.31
, pp. 1783-1834
-
-
Dätig, M.1
Schlurmann, T.2
-
20
-
-
43049107481
-
An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery
-
Wu F., Qu L. An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery. Journal of Sound and Vibration 2008, 314:586-602.
-
(2008)
Journal of Sound and Vibration
, vol.314
, pp. 586-602
-
-
Wu, F.1
Qu, L.2
-
21
-
-
33845388316
-
Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform
-
Cheng J., Yu D., Yang Y. Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform. Mechanical Systems and Signal Processing 2007, 21:1197-1211.
-
(2007)
Mechanical Systems and Signal Processing
, vol.21
, pp. 1197-1211
-
-
Cheng, J.1
Yu, D.2
Yang, Y.3
-
22
-
-
84861584843
-
Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression
-
Lin D.C., Guo Z.L., An F.P., Zeng F.L. Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression. Mechanical Systems and Signal Processing 2012, 31:13-28.
-
(2012)
Mechanical Systems and Signal Processing
, vol.31
, pp. 13-28
-
-
Lin, D.C.1
Guo, Z.L.2
An, F.P.3
Zeng, F.L.4
-
23
-
-
18544377981
-
Support vector machines with simulated annealing algorithms in electricity load forecasting
-
Pai P.F., Hong W.C. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management 2005, 46:2669-2688.
-
(2005)
Energy Conversion and Management
, vol.46
, pp. 2669-2688
-
-
Pai, P.F.1
Hong, W.C.2
-
24
-
-
33645796880
-
A support vector machine based approach for forecasting of network weather services
-
Prem H., Raghavan N.R.S. A support vector machine based approach for forecasting of network weather services. Journal of Grid Computing 2006, 4:89-114.
-
(2006)
Journal of Grid Computing
, vol.4
, pp. 89-114
-
-
Prem, H.1
Raghavan, N.R.S.2
-
25
-
-
33748695973
-
Support vector regression with genetic algorithms in forecasting tourism demand
-
Chen K.Y., Wang C.H. Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management 2007, 28:215-226.
-
(2007)
Tourism Management
, vol.28
, pp. 215-226
-
-
Chen, K.Y.1
Wang, C.H.2
-
26
-
-
33746916489
-
Support vector regression for real-time flood stage forecasting
-
Yu P.S., Chen S.T., Chang I.F. Support vector regression for real-time flood stage forecasting. Journal of Hydrology 2006, 328:704-716.
-
(2006)
Journal of Hydrology
, vol.328
, pp. 704-716
-
-
Yu, P.S.1
Chen, S.T.2
Chang, I.F.3
-
27
-
-
77949261563
-
A soft computing system for day-ahead electricity price forecasting
-
Niu D., Liu D., Wu D.D. A soft computing system for day-ahead electricity price forecasting. Applied Soft Computing 2010, 10:868-875.
-
(2010)
Applied Soft Computing
, vol.10
, pp. 868-875
-
-
Niu, D.1
Liu, D.2
Wu, D.D.3
-
28
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Vapnik V., Golowich S.E., Smola A. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 1997, 281-287.
-
(1997)
Advances in Neural Information Processing Systems
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.E.2
Smola, A.3
-
29
-
-
64849083683
-
Applying support vector machine to predict hourly cooling load in the building
-
Li Q., Meng Q., Cai J., Yoshino H., Mochida A. Applying support vector machine to predict hourly cooling load in the building. ApEn 2009, 86:2249-2256.
-
(2009)
ApEn
, vol.86
, pp. 2249-2256
-
-
Li, Q.1
Meng, Q.2
Cai, J.3
Yoshino, H.4
Mochida, A.5
-
30
-
-
79956363043
-
Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
-
Andrawis R.R., Atiya A.F., El-Shishiny H. Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. International Journal of Forecasting 2011, 27:672-688.
-
(2011)
International Journal of Forecasting
, vol.27
, pp. 672-688
-
-
Andrawis, R.R.1
Atiya, A.F.2
El-Shishiny, H.3
-
32
-
-
84859425235
-
Precipitation forecasting by using wavelet-support vector machine conjunction model
-
Kisi O., Cimen M. Precipitation forecasting by using wavelet-support vector machine conjunction model. Engineering Applications of Artificial Intelligence 2012, 25:783-792.
-
(2012)
Engineering Applications of Artificial Intelligence
, vol.25
, pp. 783-792
-
-
Kisi, O.1
Cimen, M.2
-
33
-
-
84858001572
-
A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
-
Tang L., Yu L., Wang S., Li J., Wang S. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. ApEn 2011, 93:432-443.
-
(2011)
ApEn
, vol.93
, pp. 432-443
-
-
Tang, L.1
Yu, L.2
Wang, S.3
Li, J.4
Wang, S.5
-
34
-
-
34548170754
-
Methodology for long-term prediction of time series
-
Sorjamaa A., Hao J., Reyhani N., Ji Y., Lendasse A. Methodology for long-term prediction of time series. Neurocomputing 2007, 70:2861-2869.
-
(2007)
Neurocomputing
, vol.70
, pp. 2861-2869
-
-
Sorjamaa, A.1
Hao, J.2
Reyhani, N.3
Ji, Y.4
Lendasse, A.5
-
35
-
-
0034694877
-
Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-a strategy for system predictor identification
-
Sharma A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-a strategy for system predictor identification. Journal of Hydrology 2000, 239:232-239.
-
(2000)
Journal of Hydrology
, vol.239
, pp. 232-239
-
-
Sharma, A.1
-
36
-
-
77952553004
-
Multiple-output modeling for multi-step-ahead time series forecasting
-
Ben Taieb S., Sorjamaa A., Bontempi G. Multiple-output modeling for multi-step-ahead time series forecasting. Neurocomputing 2010, 73:1950-1957.
-
(2010)
Neurocomputing
, vol.73
, pp. 1950-1957
-
-
Ben Taieb, S.1
Sorjamaa, A.2
Bontempi, G.3
-
37
-
-
84885855336
-
-
Automatic Modelling and Forecasting with Artificial Neural Networks-A forecasting Competition Evaluation. IIF/SAS Grant 2005 Research Report
-
S.F. Crone, K. Nikolopoulos, M. Hibon, Automatic Modelling and Forecasting with Artificial Neural Networks-A forecasting Competition Evaluation. IIF/SAS Grant 2005 Research Report, 2008.
-
(2008)
-
-
Crone, S.F.1
Nikolopoulos, K.2
Hibon, M.3
-
40
-
-
44349114564
-
Trend time-series modeling and forecasting with neural networks
-
Qi M., Zhang G.P. Trend time-series modeling and forecasting with neural networks. IEEE Transactions on Neural Networks 2008, 19:808-816.
-
(2008)
IEEE Transactions on Neural Networks
, vol.19
, pp. 808-816
-
-
Qi, M.1
Zhang, G.P.2
-
41
-
-
84885863009
-
-
Multiple comparisons
-
B. Tukey's, Multiple comparisons, 1953.
-
(1953)
-
-
Tukey's, B.1
-
45
-
-
56549111881
-
A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
-
Guo X., Yang J., Wu C., Wang C., Liang Y. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 2008, 71:3211-3215.
-
(2008)
Neurocomputing
, vol.71
, pp. 3211-3215
-
-
Guo, X.1
Yang, J.2
Wu, C.3
Wang, C.4
Liang, Y.5
-
46
-
-
0004222346
-
-
Morgan Kaufmann Publishers, San Francisco, CA
-
Kennedy J.F., Kennedy J., Eberhart.R.C. Swarm Intelligence 2001, Morgan Kaufmann Publishers, San Francisco, CA.
-
(2001)
Swarm Intelligence
-
-
Kennedy, J.F.1
Kennedy, J.2
Eberhart, R.C.3
-
47
-
-
48749112805
-
Automatic time series for forecasting: the forecast package for R
-
Hyndman R.J., Khandakar Y. Automatic time series for forecasting: the forecast package for R. Journal of Statistical Software 2007, 26:1-22.
-
(2007)
Journal of Statistical Software
, vol.26
, pp. 1-22
-
-
Hyndman, R.J.1
Khandakar, Y.2
-
48
-
-
80052078099
-
Ensemble empirical mode decomposition: A noise-assisted data analysis method
-
Wu Z., Huang N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis 2009, 1:1-41.
-
(2009)
Advances in Adaptive Data Analysis
, vol.1
, pp. 1-41
-
-
Wu, Z.1
Huang, N.E.2
|