메뉴 건너뛰기




Volumn 123, Issue , 2014, Pages 174-184

Does restraining end effect matter in EMD-based modeling framework for time series prediction? Some experimental evidences

Author keywords

Empirical mode decomposition; End effect; Ensemble modeling; Support vector regression; Time series prediction

Indexed keywords

EMPIRICAL MODE DECOMPOSITION; END EFFECTS; ENSEMBLE MODELING; SUPPORT VECTOR REGRESSION (SVR); TIME SERIES PREDICTION;

EID: 84885867678     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.07.004     Document Type: Article
Times cited : (62)

References (48)
  • 1
    • 77957994377 scopus 로고    scopus 로고
    • Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming
    • Lee Y.S., Tong L.I. Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming. Knowledge-based Systems 2011, 24:66-72.
    • (2011) Knowledge-based Systems , vol.24 , pp. 66-72
    • Lee, Y.S.1    Tong, L.I.2
  • 2
    • 64749095804 scopus 로고    scopus 로고
    • Modeling and forecasting crude oil markets using ARCH-type models
    • Cheong C.W. Modeling and forecasting crude oil markets using ARCH-type models. Energy Policy 2009, 37:2346-2355.
    • (2009) Energy Policy , vol.37 , pp. 2346-2355
    • Cheong, C.W.1
  • 3
    • 70449528756 scopus 로고    scopus 로고
    • Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm
    • Lee C.M., Ko C.N. Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm. Neurocomputing 2009, 73:449-460.
    • (2009) Neurocomputing , vol.73 , pp. 449-460
    • Lee, C.M.1    Ko, C.N.2
  • 4
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim K. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55:307-319.
    • (2003) Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.1
  • 5
    • 0000860595 scopus 로고    scopus 로고
    • Neural network models for time series forecasts
    • Hill T., O'Connor M., Remus W. Neural network models for time series forecasts. Management Science 1996, 42:1082-1092.
    • (1996) Management Science , vol.42 , pp. 1082-1092
    • Hill, T.1    O'Connor, M.2    Remus, W.3
  • 6
    • 48049095703 scopus 로고    scopus 로고
    • Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
    • Yu L.A., Wang S.Y., Lai K.K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Economics 2008, 30:2623-2635.
    • (2008) Energy Economics , vol.30 , pp. 2623-2635
    • Yu, L.A.1    Wang, S.Y.2    Lai, K.K.3
  • 8
    • 77249162115 scopus 로고    scopus 로고
    • Forecasting demand of commodities after natural disasters
    • Xu X., Qi Y., Hua Z. Forecasting demand of commodities after natural disasters. Expert Systems with Applications 2010, 37:4313-4317.
    • (2010) Expert Systems with Applications , vol.37 , pp. 4313-4317
    • Xu, X.1    Qi, Y.2    Hua, Z.3
  • 9
    • 84155186340 scopus 로고    scopus 로고
    • Forecasting tourism demand based on empirical mode decomposition and neural network
    • Chen C.F., Lai M.C., Yeh C.C. Forecasting tourism demand based on empirical mode decomposition and neural network. Knowledge-based Systems 2012, 26:281-287.
    • (2012) Knowledge-based Systems , vol.26 , pp. 281-287
    • Chen, C.F.1    Lai, M.C.2    Yeh, C.C.3
  • 10
    • 80155154044 scopus 로고    scopus 로고
    • Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
    • Wei Y., Chen M.C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transportation Research Part C: Emerging Technologies 2012, 21:148-162.
    • (2012) Transportation Research Part C: Emerging Technologies , vol.21 , pp. 148-162
    • Wei, Y.1    Chen, M.C.2
  • 11
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo Z., Zhao W., Lu H., Wang J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy 2012, 37:241-249.
    • (2012) Renewable Energy , vol.37 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3    Wang, J.4
  • 12
    • 84858001572 scopus 로고    scopus 로고
    • A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
    • Tang L., Yu L., Wang S., Li J., Wang S. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. ApEn 2012, 93:432-443.
    • (2012) ApEn , vol.93 , pp. 432-443
    • Tang, L.1    Yu, L.2    Wang, S.3    Li, J.4    Wang, S.5
  • 13
    • 79955740028 scopus 로고    scopus 로고
    • Short-term electricity price forecast based on the improved hybrid model
    • Dong Y., Wang J., Jiang H., Wu J. Short-term electricity price forecast based on the improved hybrid model. Energy Conversion Management 2011, 52:2987-2995.
    • (2011) Energy Conversion Management , vol.52 , pp. 2987-2995
    • Dong, Y.1    Wang, J.2    Jiang, H.3    Wu, J.4
  • 14
    • 80051585160 scopus 로고    scopus 로고
    • Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: an empirical examination
    • Napolitano G., Serinaldi F., See L. Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: an empirical examination. Journal of Hydrology 2011, 406:199-214.
    • (2011) Journal of Hydrology , vol.406 , pp. 199-214
    • Napolitano, G.1    Serinaldi, F.2    See, L.3
  • 15
    • 0034948005 scopus 로고    scopus 로고
    • Boundary-processing-technique in EMD method and Hilbert transform
    • Deng Y., Wang W., Qian C., Wang Z., Dai D. Boundary-processing-technique in EMD method and Hilbert transform. Chinese Sciene Bulletin 2001, 46:954-960.
    • (2001) Chinese Sciene Bulletin , vol.46 , pp. 954-960
    • Deng, Y.1    Wang, W.2    Qian, C.3    Wang, Z.4    Dai, D.5
  • 16
    • 3042694358 scopus 로고    scopus 로고
    • 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method
    • Coughlin K., Tung K.K. 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method. Advances in Space Research 2004, 34:323-329.
    • (2004) Advances in Space Research , vol.34 , pp. 323-329
    • Coughlin, K.1    Tung, K.K.2
  • 17
    • 84885860093 scopus 로고    scopus 로고
    • G. Rilling, P. Flandrin, P. Gonçalvés, On empirical mode decomposition and its algorithms, in: IEEE-EURASIP Workshop on Nonlinear signal and Image Processing, 2003, pp. 1-5.
    • G. Rilling, P. Flandrin, P. Gonçalvés, On empirical mode decomposition and its algorithms, in: IEEE-EURASIP Workshop on Nonlinear signal and Image Processing, 2003, pp. 1-5.
  • 19
    • 4143084984 scopus 로고    scopus 로고
    • Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves
    • Dätig M., Schlurmann T. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves. Ocean Engineering 2004, 31:1783-1834.
    • (2004) Ocean Engineering , vol.31 , pp. 1783-1834
    • Dätig, M.1    Schlurmann, T.2
  • 20
    • 43049107481 scopus 로고    scopus 로고
    • An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery
    • Wu F., Qu L. An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery. Journal of Sound and Vibration 2008, 314:586-602.
    • (2008) Journal of Sound and Vibration , vol.314 , pp. 586-602
    • Wu, F.1    Qu, L.2
  • 21
    • 33845388316 scopus 로고    scopus 로고
    • Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform
    • Cheng J., Yu D., Yang Y. Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform. Mechanical Systems and Signal Processing 2007, 21:1197-1211.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 1197-1211
    • Cheng, J.1    Yu, D.2    Yang, Y.3
  • 22
    • 84861584843 scopus 로고    scopus 로고
    • Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression
    • Lin D.C., Guo Z.L., An F.P., Zeng F.L. Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression. Mechanical Systems and Signal Processing 2012, 31:13-28.
    • (2012) Mechanical Systems and Signal Processing , vol.31 , pp. 13-28
    • Lin, D.C.1    Guo, Z.L.2    An, F.P.3    Zeng, F.L.4
  • 23
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • Pai P.F., Hong W.C. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management 2005, 46:2669-2688.
    • (2005) Energy Conversion and Management , vol.46 , pp. 2669-2688
    • Pai, P.F.1    Hong, W.C.2
  • 24
    • 33645796880 scopus 로고    scopus 로고
    • A support vector machine based approach for forecasting of network weather services
    • Prem H., Raghavan N.R.S. A support vector machine based approach for forecasting of network weather services. Journal of Grid Computing 2006, 4:89-114.
    • (2006) Journal of Grid Computing , vol.4 , pp. 89-114
    • Prem, H.1    Raghavan, N.R.S.2
  • 25
    • 33748695973 scopus 로고    scopus 로고
    • Support vector regression with genetic algorithms in forecasting tourism demand
    • Chen K.Y., Wang C.H. Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management 2007, 28:215-226.
    • (2007) Tourism Management , vol.28 , pp. 215-226
    • Chen, K.Y.1    Wang, C.H.2
  • 26
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu P.S., Chen S.T., Chang I.F. Support vector regression for real-time flood stage forecasting. Journal of Hydrology 2006, 328:704-716.
    • (2006) Journal of Hydrology , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 27
    • 77949261563 scopus 로고    scopus 로고
    • A soft computing system for day-ahead electricity price forecasting
    • Niu D., Liu D., Wu D.D. A soft computing system for day-ahead electricity price forecasting. Applied Soft Computing 2010, 10:868-875.
    • (2010) Applied Soft Computing , vol.10 , pp. 868-875
    • Niu, D.1    Liu, D.2    Wu, D.D.3
  • 29
    • 64849083683 scopus 로고    scopus 로고
    • Applying support vector machine to predict hourly cooling load in the building
    • Li Q., Meng Q., Cai J., Yoshino H., Mochida A. Applying support vector machine to predict hourly cooling load in the building. ApEn 2009, 86:2249-2256.
    • (2009) ApEn , vol.86 , pp. 2249-2256
    • Li, Q.1    Meng, Q.2    Cai, J.3    Yoshino, H.4    Mochida, A.5
  • 30
    • 79956363043 scopus 로고    scopus 로고
    • Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
    • Andrawis R.R., Atiya A.F., El-Shishiny H. Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. International Journal of Forecasting 2011, 27:672-688.
    • (2011) International Journal of Forecasting , vol.27 , pp. 672-688
    • Andrawis, R.R.1    Atiya, A.F.2    El-Shishiny, H.3
  • 32
    • 84859425235 scopus 로고    scopus 로고
    • Precipitation forecasting by using wavelet-support vector machine conjunction model
    • Kisi O., Cimen M. Precipitation forecasting by using wavelet-support vector machine conjunction model. Engineering Applications of Artificial Intelligence 2012, 25:783-792.
    • (2012) Engineering Applications of Artificial Intelligence , vol.25 , pp. 783-792
    • Kisi, O.1    Cimen, M.2
  • 33
    • 84858001572 scopus 로고    scopus 로고
    • A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
    • Tang L., Yu L., Wang S., Li J., Wang S. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. ApEn 2011, 93:432-443.
    • (2011) ApEn , vol.93 , pp. 432-443
    • Tang, L.1    Yu, L.2    Wang, S.3    Li, J.4    Wang, S.5
  • 35
    • 0034694877 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-a strategy for system predictor identification
    • Sharma A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-a strategy for system predictor identification. Journal of Hydrology 2000, 239:232-239.
    • (2000) Journal of Hydrology , vol.239 , pp. 232-239
    • Sharma, A.1
  • 36
    • 77952553004 scopus 로고    scopus 로고
    • Multiple-output modeling for multi-step-ahead time series forecasting
    • Ben Taieb S., Sorjamaa A., Bontempi G. Multiple-output modeling for multi-step-ahead time series forecasting. Neurocomputing 2010, 73:1950-1957.
    • (2010) Neurocomputing , vol.73 , pp. 1950-1957
    • Ben Taieb, S.1    Sorjamaa, A.2    Bontempi, G.3
  • 37
    • 84885855336 scopus 로고    scopus 로고
    • Automatic Modelling and Forecasting with Artificial Neural Networks-A forecasting Competition Evaluation. IIF/SAS Grant 2005 Research Report
    • S.F. Crone, K. Nikolopoulos, M. Hibon, Automatic Modelling and Forecasting with Artificial Neural Networks-A forecasting Competition Evaluation. IIF/SAS Grant 2005 Research Report, 2008.
    • (2008)
    • Crone, S.F.1    Nikolopoulos, K.2    Hibon, M.3
  • 40
    • 44349114564 scopus 로고    scopus 로고
    • Trend time-series modeling and forecasting with neural networks
    • Qi M., Zhang G.P. Trend time-series modeling and forecasting with neural networks. IEEE Transactions on Neural Networks 2008, 19:808-816.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , pp. 808-816
    • Qi, M.1    Zhang, G.P.2
  • 41
    • 84885863009 scopus 로고
    • Multiple comparisons
    • B. Tukey's, Multiple comparisons, 1953.
    • (1953)
    • Tukey's, B.1
  • 45
    • 56549111881 scopus 로고    scopus 로고
    • A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
    • Guo X., Yang J., Wu C., Wang C., Liang Y. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 2008, 71:3211-3215.
    • (2008) Neurocomputing , vol.71 , pp. 3211-3215
    • Guo, X.1    Yang, J.2    Wu, C.3    Wang, C.4    Liang, Y.5
  • 47
    • 48749112805 scopus 로고    scopus 로고
    • Automatic time series for forecasting: the forecast package for R
    • Hyndman R.J., Khandakar Y. Automatic time series for forecasting: the forecast package for R. Journal of Statistical Software 2007, 26:1-22.
    • (2007) Journal of Statistical Software , vol.26 , pp. 1-22
    • Hyndman, R.J.1    Khandakar, Y.2
  • 48
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • Wu Z., Huang N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis 2009, 1:1-41.
    • (2009) Advances in Adaptive Data Analysis , vol.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.