메뉴 건너뛰기




Volumn 47, Issue 11, 2014, Pages 3641-3655

Learning kernel logistic regression in the presence of class label noise

Author keywords

Classification; Label noise; Model selection; Multiple Kernel Learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); MACHINERY;

EID: 84904348097     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.05.007     Document Type: Article
Times cited : (55)

References (47)
  • 1
    • 84877758755 scopus 로고    scopus 로고
    • Decontamination of training samples for supervised pattern recognition methods
    • Springer, Berlin, Heidelberg
    • R. Barandela, E. Gasca, Decontamination of training samples for supervised pattern recognition methods, in: Advances in Pattern Recognition, Lecture Notes in Computer Science, vol. 1876, Springer, Berlin, Heidelberg, 2000, pp. 621-630.
    • (2000) Advances in Pattern Recognition, Lecture Notes in Computer Science , vol.1876 , pp. 621-630
    • Barandela, R.1    Gasca, E.2
  • 4
    • 84866857513 scopus 로고    scopus 로고
    • Label-noise robust logistic regression and its applications
    • J. Bootkrajang, A. Kabán, Label-noise robust logistic regression and its applications, in: ECML/PKDD (1), 2012, pp. 143-158.
    • (2012) ECML/PKDD , Issue.1 , pp. 143-158
    • Bootkrajang, J.1
  • 5
    • 84875610394 scopus 로고    scopus 로고
    • Classification of mislabelled microarrays using robust sparse logistic regression
    • J. Bootkrajang, and A. Kabán Classification of mislabelled microarrays using robust sparse logistic regression Bioinformatics 29 7 2013 870 877
    • (2013) Bioinformatics , vol.29 , Issue.7 , pp. 870-877
    • Bootkrajang, J.1    Kabán, A.2
  • 6
    • 67649389414 scopus 로고    scopus 로고
    • Robust supervised classification with mixture models learning from data with uncertain labels
    • C. Bouveyron, and S. Girard Robust supervised classification with mixture models learning from data with uncertain labels Pattern Recognit. 42 11 2009 2649 2658
    • (2009) Pattern Recognit. , vol.42 , Issue.11 , pp. 2649-2658
    • Bouveyron, C.1    Girard, S.2
  • 8
    • 77956907243 scopus 로고    scopus 로고
    • On over-fitting in model selection and subsequent selection bias in performance evaluation
    • G.C. Cawley, and N.L. Talbot On over-fitting in model selection and subsequent selection bias in performance evaluation J. Mach. Learn. Res. 99 2010 2079 2107
    • (2010) J. Mach. Learn. Res. , vol.99 , pp. 2079-2107
    • Cawley, G.C.1    Talbot, N.L.2
  • 9
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters
    • G.C. Cawley, and N.L.C. Talbot Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters J. Mach. Learn. Res. 8 2007 841 861 (Pubitemid 46677044)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 841-861
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 12
    • 0011210217 scopus 로고
    • Linear discriminant analysis with misallocation in training samples
    • R.S. Chhikara, and J. McKeon Linear discriminant analysis with misallocation in training samples J. Am. Stat. Assoc. 79 388 1984 899 906
    • (1984) J. Am. Stat. Assoc. , vol.79 , Issue.388 , pp. 899-906
    • Chhikara, R.S.1    McKeon, J.2
  • 14
    • 55349088563 scopus 로고    scopus 로고
    • Pattern recognition with a Bayesian kernel combination machine
    • T. Damoulas, and M.A. Girolami Pattern recognition with a Bayesian kernel combination machine Pattern Recognit. Lett. 30 1 2009 46 54
    • (2009) Pattern Recognit. Lett. , vol.30 , Issue.1 , pp. 46-54
    • Damoulas, T.1    Girolami, M.A.2
  • 15
    • 80052422950 scopus 로고    scopus 로고
    • Label noise-tolerant hidden Markov models for segmentation: Application to ECGs
    • B. Frénay, G. de Lannoy, M. Verleysen, Label noise-tolerant hidden Markov models for segmentation: application to ECGs, in: ECML/PKDD (1), 2011, pp. 455-470.
    • (2011) ECML/PKDD , Issue.1 , pp. 455-470
    • Frénay, B.1
  • 16
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • M. Gönen, and E. Alpaydin Multiple kernel learning algorithms J. Mach. Learn. Res. 12 2011 2211 2268
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydin, E.2
  • 17
    • 0007984413 scopus 로고    scopus 로고
    • Misclassification of the dependent variable in a discrete-response setting
    • PII S0304407698000153
    • J.A. Hausman, J. Abrevaya, and F.M. Scott-Morton Misclassification of the dependent variable in a discrete-response setting J. Econom. 87 2 1998 239 269 (Pubitemid 128430148)
    • (1998) Journal of Econometrics , vol.87 , Issue.2 , pp. 239-269
    • Hausman, J.A.1    Abrevaya, J.2    Scott-Morton, F.M.3
  • 18
    • 35048842249 scopus 로고    scopus 로고
    • Editing training data for knn classifiers with neural network ensemble
    • Springer, Berlin, Heidelberg
    • Y. Jiang, Z.-H. Zhou, Editing training data for knn classifiers with neural network ensemble, in: Advances in Neural Networks, Lecture Notes in Computer Science, vol. 3173, Springer, Berlin, Heidelberg, 2004, pp. 356-361.
    • (2004) Advances in Neural Networks, Lecture Notes in Computer Science , vol.3173 , pp. 356-361
    • Jiang, Y.1    Zhou, Z.-H.2
  • 19
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • G.S. Kimeldorf, and G. Wahba Some results on Tchebycheffian spline functions J. Math. Anal. Appl. 33 1 1971 82 95
    • (1971) J. Math. Anal. Appl. , vol.33 , Issue.1 , pp. 82-95
    • Kimeldorf, G.S.1    Wahba, G.2
  • 20
    • 0025572815 scopus 로고
    • Efficiency of discriminant analysis when initial samples are classified stochastically
    • T. Krishnan, and S.C. Nandy Efficiency of discriminant analysis when initial samples are classified stochastically Pattern Recognit. 23 5 1990 529 537
    • (1990) Pattern Recognit. , vol.23 , Issue.5 , pp. 529-537
    • Krishnan, T.1    Nandy, S.C.2
  • 21
    • 0001385070 scopus 로고
    • Discriminant analysis when the initial samples are misclassified
    • P.A. Lachenbruch Discriminant analysis when the initial samples are misclassified Technometrics 8 4 1966 657 662
    • (1966) Technometrics , vol.8 , Issue.4 , pp. 657-662
    • Lachenbruch, P.A.1
  • 22
    • 0016093646 scopus 로고
    • Discriminant analysis when the initial samples are misclassified ii non-random misclassification models
    • P.A. Lachenbruch Discriminant analysis when the initial samples are misclassified ii non-random misclassification models Technometrics 16 3 1974 419 424
    • (1974) Technometrics , vol.16 , Issue.3 , pp. 419-424
    • Lachenbruch, P.A.1
  • 23
    • 8844263749 scopus 로고    scopus 로고
    • A statistical framework for genomic data fusion
    • DOI 10.1093/bioinformatics/bth294
    • G.R.G. Lanckriet, T. De Bie, N. Cristianini, M.I. Jordan, and W.S. Noble A statistical framework for genomic data fusion Bioinformatics 20 16 2004 2626 2635 (Pubitemid 39530149)
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2626-2635
    • Lanckriet, G.R.G.1    De Bie, T.2    Cristianini, N.3    Jordan, M.I.4    Noble, S.5
  • 25
    • 34547697572 scopus 로고    scopus 로고
    • Classification in the presence of class noise using a probabilistic Kernel Fisher method
    • DOI 10.1016/j.patcog.2007.05.006, PII S0031320307002166
    • Y. Li, L.F. Wessels, D. de Ridder, and M.J. Reinders Classification in the presence of class noise using a probabilistic kernel fisher method Pattern Recognit. 40 12 2007 3349 3357 (Pubitemid 47223298)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3349-3357
    • Li, Y.1    Wessels, L.F.A.2    De Ridder, D.3    Reinders, M.J.T.4
  • 26
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • IEEE Computer Society, Washington, DC, USA
    • D.G. Lowe, Object recognition from local scale-invariant features, in: Proceedings of the International Conference on Computer Vision (ICCV '99), vol. 2, IEEE Computer Society, Washington, DC, USA, 1999, pp. 1150-1157.
    • (1999) Proceedings of the International Conference on Computer Vision (ICCV '99) , vol.2 , pp. 1150-1157
    • Lowe, D.G.1
  • 27
    • 0026712043 scopus 로고
    • Learning with an unreliable teacher
    • G. Lugosi Learning with an unreliable teacher Pattern Recognit. 25 1992 79 87
    • (1992) Pattern Recognit. , vol.25 , pp. 79-87
    • Lugosi, G.1
  • 28
    • 0030609723 scopus 로고    scopus 로고
    • Logistic regression when the outcome is measured with uncertainty
    • L.S. Magder, and J.P. Hughes Logistic regression when the outcome is measured with uncertainty Am. J. Epidemiol. 146 2 1997 195 203
    • (1997) Am. J. Epidemiol. , vol.146 , Issue.2 , pp. 195-203
    • Magder, L.S.1    Hughes, J.P.2
  • 30
    • 33748659204 scopus 로고    scopus 로고
    • Detecting potential labeling errors in microarrays by data perturbation
    • DOI 10.1093/bioinformatics/btl346
    • A. Malossini, E. Blanzieri, and R.T. Ng Detecting potential labeling errors in microarrays by data perturbation Bioinformatics 22 17 2006 2114 2121 (Pubitemid 44390902)
    • (2006) Bioinformatics , vol.22 , Issue.17 , pp. 2114-2121
    • Malossini, A.1    Blanzieri, E.2    Ng, R.T.3
  • 33
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • DOI 10.1109/TPAMI.2002.1017623
    • T. Ojala, M. Pietikainen, and T. Maenpaa Multiresolution gray-scale and rotation invariant texture classification with local binary patterns IEEE Trans. Pattern Anal. Mach. Intell. 24 7 2002 971 987 (Pubitemid 34835471)
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 35
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • DOI 10.1023/A:1007618119488
    • G. Rätsch, T. Onoda, K.-R. Müller, Soft margins for adaboost, Mach. Learn. (2001) 287-320. (Pubitemid 32188795)
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Muller, K.-R.3
  • 37
    • 0347895067 scopus 로고    scopus 로고
    • Analysis of new techniques to obtain quality training sets
    • DOI 10.1016/S0167-8655(02)00225-8, PII S0167865502002258
    • J.S. Sánchez, R. Barandela, A.I. Marqués, R. Alejo, and J. Badenas Analysis of new techniques to obtain quality training sets Pattern Recognit. Lett. 24 7 2003 1015 1022 (Pubitemid 36049311)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.7 , pp. 1015-1022
    • Sanchez, J.S.1    Barandela, R.2    Marques, A.I.3    Alejo, R.4    Badenas, J.5
  • 38
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast - But is it good? Evaluating non-expert annotations for natural language tasks
    • R. Snow, B. O'Connor, D. Jurafsky, A. Y. Ng, Cheap and fast - but is it good? Evaluating non-expert annotations for natural language tasks, in: EMNLP, 2008, pp. 254-263.
    • (2008) EMNLP , pp. 254-263
    • Snow, R.1    O'Connor, B.2    Jurafsky, D.3    Ng, A.Y.4
  • 41
    • 70350610827 scopus 로고    scopus 로고
    • Learning svms from sloppily labeled data
    • Springer, Berlin, Heidelberg
    • G. Stempfel, L. Ralaivola, Learning svms from sloppily labeled data, in: ICANN (1), Lecture Notes in Computer Science, vol. 5768, Springer, Berlin, Heidelberg, 2009, pp. 884-893.
    • (2009) ICANN (1), Lecture Notes in Computer Science , vol.5768 , pp. 884-893
    • Stempfel, G.1    Ralaivola, L.2
  • 42
    • 45749120676 scopus 로고    scopus 로고
    • Robust boosting algorithm against mislabeling in multiclass problems
    • T. Takenouchi, S. Eguchi, N. Murata, and T. Kanamori Robust boosting algorithm against mislabeling in multiclass problems Neural Comput. 20 6 2008 1596 1630
    • (2008) Neural Comput. , vol.20 , Issue.6 , pp. 1596-1630
    • Takenouchi, T.1    Eguchi, S.2    Murata, N.3    Kanamori, T.4
  • 43
    • 68949157380 scopus 로고    scopus 로고
    • Robustness and regularization of support vector machines
    • H. Xu, C. Caramanis, and S. Mannor Robustness and regularization of support vector machines J. Mach. Learn. Res. 10 2009 1485 1510
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1485-1510
    • Xu, H.1    Caramanis, C.2    Mannor, S.3
  • 44
    • 33750691986 scopus 로고    scopus 로고
    • Robust support vector machine training via convex outlier ablation
    • Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
    • L. Xu, K. Crammer, D. Schuurmans, Robust support vector machine training via convex outlier ablation, in: Proceedings of the 21st National Conference on Artificial intelligence (AAAI'06), vol. 1, 2006, pp. 536-542. (Pubitemid 44705339)
    • (2006) Proceedings of the National Conference on Artificial Intelligence , vol.1 , pp. 536-542
    • Linli, X.1    Crammer, K.2    Schuurmans, D.3
  • 45
    • 77956547440 scopus 로고    scopus 로고
    • Simple and efficient multiple kernel learning by group lasso
    • Z. Xu, R. Jin, H. Yang, I. King, M.R. Lyu, Simple and efficient multiple kernel learning by group lasso, in: ICML, 2010, pp. 1175-1182.
    • (2010) ICML , pp. 1175-1182
    • Xu, Z.1    Jin, R.2    Yang, H.3    King, I.4    Lyu, M.R.5
  • 46
    • 84867135321 scopus 로고    scopus 로고
    • Multiple kernel learning from noisy labels by stochastic programming
    • T. Yang, M. Mahdavi, R. Jin, L. Zhang, Y. Zhou, Multiple kernel learning from noisy labels by stochastic programming, in: ICML, 2012, pp. 233-240.
    • (2012) ICML , pp. 233-240
    • Yang, T.1    Mahdavi, M.2    Jin, R.3    Zhang, L.4    Zhou, Y.5
  • 47
    • 1642306201 scopus 로고    scopus 로고
    • Partially Supervised Learning Using an EM-Boosting Algorithm
    • DOI 10.1111/j.0006-341X.2004.00156.x
    • Y. Yasui, M. Pepe, L. Hsu, B.-L. Adam, and Z. Feng Partially supervised learning using an EM-boosting algorithm Biometrics 60 1 2004 199 206 (Pubitemid 38392632)
    • (2004) Biometrics , vol.60 , Issue.1 , pp. 199-206
    • Yasui, Y.1    Pepe, M.2    Hsu, L.3    Adam, B.-L.4    Feng, Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.