-
1
-
-
84916537550
-
Bayesian analysis of binary and polychotomous response data
-
Albert J., and Chib S. Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 (1993) 669-679
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, pp. 669-679
-
-
Albert, J.1
Chib, S.2
-
5
-
-
43349094032
-
Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection
-
Damoulas T., and Girolami M.A. Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection. Bioinformatics 24 10 (2008) 1264-1270
-
(2008)
Bioinformatics
, vol.24
, Issue.10
, pp. 1264-1270
-
-
Damoulas, T.1
Girolami, M.A.2
-
6
-
-
55349146010
-
-
West Sussex, UK
-
Denison D.G.T., Holmes C.C., Mallick B.K., and Smith A.F.M. Bayesian Methods for Nonlinear Classification and Regression. Wiley Series in Probability and Statistics (2002), West Sussex, UK
-
(2002)
Wiley Series in Probability and Statistics
-
-
Denison, D.G.T.1
Holmes, C.C.2
Mallick, B.K.3
Smith, A.F.M.4
-
7
-
-
80053403826
-
-
Dietterich, T.G., 2000. Ensemble methods in machine learning. In: Proceedings of the First International Workshop on Multiple Classifier Systems, pp. 1-15.
-
Dietterich, T.G., 2000. Ensemble methods in machine learning. In: Proceedings of the First International Workshop on Multiple Classifier Systems, pp. 1-15.
-
-
-
-
9
-
-
31844435594
-
-
Girolami, M., Rogers, S., 2005. Hierarchic Bayesian models for kernel learning. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 241-248.
-
Girolami, M., Rogers, S., 2005. Hierarchic Bayesian models for kernel learning. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 241-248.
-
-
-
-
10
-
-
84864066685
-
-
Girolami, M., Zhong, M., 2007. Data integration for classification problems employing Gaussian process priors. In: Twentieth Annual Conference on Neural Information Processing Systems.
-
Girolami, M., Zhong, M., 2007. Data integration for classification problems employing Gaussian process priors. In: Twentieth Annual Conference on Neural Information Processing Systems.
-
-
-
-
12
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97-109
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
13
-
-
84867151416
-
Bayesian auxiliary variable models for binary and multinomial regression
-
Holmes C.C., and Held L. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Anal. 1 (2006) 145-168
-
(2006)
Bayesian Anal.
, vol.1
, pp. 145-168
-
-
Holmes, C.C.1
Held, L.2
-
15
-
-
0032021555
-
On combining classifiers
-
Kittler J., Hatef M., Duin R.P.W., and Matas J. On combining classifiers. IEEE Trans. Pattern Anal. Machine Intell. 20 3 (1998) 226-239
-
(1998)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.P.W.3
Matas, J.4
-
16
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet G.R.G. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5 (2004) 27-72
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
-
17
-
-
55349127466
-
-
Lee, W.-J., Verzakov, S., Duin, R.P., 2007. Kernel combination versus classifier combination. In: Seventh International Workshop on Multiple Classifier Systems.
-
Lee, W.-J., Verzakov, S., Duin, R.P., 2007. Kernel combination versus classifier combination. In: Seventh International Workshop on Multiple Classifier Systems.
-
-
-
-
18
-
-
33749248521
-
-
Lewis, D. P., Jebara, T., Noble, W.S., 2006a. Nonstationary kernel combination. In: The 23rd International Conference on Machine Learning.
-
Lewis, D. P., Jebara, T., Noble, W.S., 2006a. Nonstationary kernel combination. In: The 23rd International Conference on Machine Learning.
-
-
-
-
19
-
-
33750975917
-
Support vector machine learning from heterogenous data: An empirical analysis using protein sequence and structure
-
Lewis D.P., Jebara T., and Noble W.S. Support vector machine learning from heterogenous data: An empirical analysis using protein sequence and structure. Bioinformatics 22 22 (2006) 2753-2760
-
(2006)
Bioinformatics
, vol.22
, Issue.22
, pp. 2753-2760
-
-
Lewis, D.P.1
Jebara, T.2
Noble, W.S.3
-
21
-
-
0002628667
-
Regression and classification using Gaussian process priors
-
Neal R.M. Regression and classification using Gaussian process priors. Bayesian Statist. 6 (1998) 475-501
-
(1998)
Bayesian Statist.
, vol.6
, pp. 475-501
-
-
Neal, R.M.1
-
22
-
-
55349092069
-
-
Newman, D., Hettich, S., Blake, C., Merz, C., 1998. UCI Repository of Machine Learning Databases. .
-
Newman, D., Hettich, S., Blake, C., Merz, C., 1998. UCI Repository of Machine Learning Databases. .
-
-
-
-
24
-
-
0034818556
-
-
Pavlidis, P., Weston, J., Cai, J., Grundy, N.W., 2001. Gene functional classification from heterogenous data. In: Fifth Annual International Conference on Computational Molecular Biology, pp. 242-248.
-
Pavlidis, P., Weston, J., Cai, J., Grundy, N.W., 2001. Gene functional classification from heterogenous data. In: Fifth Annual International Conference on Computational Molecular Biology, pp. 242-248.
-
-
-
-
25
-
-
0035421319
-
On fusers that perform better than best sensor
-
Rao N.S.V. On fusers that perform better than best sensor. IEEE Trans. Pattern Anal. Machine Intell. 23 8 (2001) 904-909
-
(2001)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.23
, Issue.8
, pp. 904-909
-
-
Rao, N.S.V.1
-
26
-
-
35048820961
-
-
Rao, N.S.V., 2004. A generic sensor fusion problem: Classification and function estimation. In: Multiple Classifier Systems.
-
Rao, N.S.V., 2004. A generic sensor fusion problem: Classification and function estimation. In: Multiple Classifier Systems.
-
-
-
-
30
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1 (2001) 211-244
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
31
-
-
0026692226
-
Stacked generalization
-
Wolpert D.H. Stacked generalization. Neural Networks 5 2 (1992) 241-259
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
|