메뉴 건너뛰기




Volumn 30, Issue 1, 2009, Pages 46-54

Pattern recognition with a Bayesian kernel combination machine

Author keywords

Bayesian inference; Classification; Information integration; Kernel combination; MCMC; Probit regression

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLASSIFIERS; CLUSTER ANALYSIS; FEATURE EXTRACTION; INFERENCE ENGINES; LEARNING SYSTEMS; MARKOV PROCESSES; PATTERN RECOGNITION; RANDOM VARIABLES;

EID: 55349088563     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2008.08.016     Document Type: Article
Times cited : (39)

References (31)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert J., and Chib S. Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 (1993) 669-679
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 669-679
    • Albert, J.1    Chib, S.2
  • 5
    • 43349094032 scopus 로고    scopus 로고
    • Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection
    • Damoulas T., and Girolami M.A. Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection. Bioinformatics 24 10 (2008) 1264-1270
    • (2008) Bioinformatics , vol.24 , Issue.10 , pp. 1264-1270
    • Damoulas, T.1    Girolami, M.A.2
  • 7
    • 80053403826 scopus 로고    scopus 로고
    • Dietterich, T.G., 2000. Ensemble methods in machine learning. In: Proceedings of the First International Workshop on Multiple Classifier Systems, pp. 1-15.
    • Dietterich, T.G., 2000. Ensemble methods in machine learning. In: Proceedings of the First International Workshop on Multiple Classifier Systems, pp. 1-15.
  • 9
    • 31844435594 scopus 로고    scopus 로고
    • Girolami, M., Rogers, S., 2005. Hierarchic Bayesian models for kernel learning. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 241-248.
    • Girolami, M., Rogers, S., 2005. Hierarchic Bayesian models for kernel learning. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 241-248.
  • 10
    • 84864066685 scopus 로고    scopus 로고
    • Girolami, M., Zhong, M., 2007. Data integration for classification problems employing Gaussian process priors. In: Twentieth Annual Conference on Neural Information Processing Systems.
    • Girolami, M., Zhong, M., 2007. Data integration for classification problems employing Gaussian process priors. In: Twentieth Annual Conference on Neural Information Processing Systems.
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97-109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 13
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • Holmes C.C., and Held L. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Anal. 1 (2006) 145-168
    • (2006) Bayesian Anal. , vol.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 16
    • 8844278523 scopus 로고    scopus 로고
    • Learning the kernel matrix with semidefinite programming
    • Lanckriet G.R.G. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5 (2004) 27-72
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 27-72
    • Lanckriet, G.R.G.1
  • 17
    • 55349127466 scopus 로고    scopus 로고
    • Lee, W.-J., Verzakov, S., Duin, R.P., 2007. Kernel combination versus classifier combination. In: Seventh International Workshop on Multiple Classifier Systems.
    • Lee, W.-J., Verzakov, S., Duin, R.P., 2007. Kernel combination versus classifier combination. In: Seventh International Workshop on Multiple Classifier Systems.
  • 18
    • 33749248521 scopus 로고    scopus 로고
    • Lewis, D. P., Jebara, T., Noble, W.S., 2006a. Nonstationary kernel combination. In: The 23rd International Conference on Machine Learning.
    • Lewis, D. P., Jebara, T., Noble, W.S., 2006a. Nonstationary kernel combination. In: The 23rd International Conference on Machine Learning.
  • 19
    • 33750975917 scopus 로고    scopus 로고
    • Support vector machine learning from heterogenous data: An empirical analysis using protein sequence and structure
    • Lewis D.P., Jebara T., and Noble W.S. Support vector machine learning from heterogenous data: An empirical analysis using protein sequence and structure. Bioinformatics 22 22 (2006) 2753-2760
    • (2006) Bioinformatics , vol.22 , Issue.22 , pp. 2753-2760
    • Lewis, D.P.1    Jebara, T.2    Noble, W.S.3
  • 21
    • 0002628667 scopus 로고    scopus 로고
    • Regression and classification using Gaussian process priors
    • Neal R.M. Regression and classification using Gaussian process priors. Bayesian Statist. 6 (1998) 475-501
    • (1998) Bayesian Statist. , vol.6 , pp. 475-501
    • Neal, R.M.1
  • 22
    • 55349092069 scopus 로고    scopus 로고
    • Newman, D., Hettich, S., Blake, C., Merz, C., 1998. UCI Repository of Machine Learning Databases. .
    • Newman, D., Hettich, S., Blake, C., Merz, C., 1998. UCI Repository of Machine Learning Databases. .
  • 24
    • 0034818556 scopus 로고    scopus 로고
    • Pavlidis, P., Weston, J., Cai, J., Grundy, N.W., 2001. Gene functional classification from heterogenous data. In: Fifth Annual International Conference on Computational Molecular Biology, pp. 242-248.
    • Pavlidis, P., Weston, J., Cai, J., Grundy, N.W., 2001. Gene functional classification from heterogenous data. In: Fifth Annual International Conference on Computational Molecular Biology, pp. 242-248.
  • 25
    • 0035421319 scopus 로고    scopus 로고
    • On fusers that perform better than best sensor
    • Rao N.S.V. On fusers that perform better than best sensor. IEEE Trans. Pattern Anal. Machine Intell. 23 8 (2001) 904-909
    • (2001) IEEE Trans. Pattern Anal. Machine Intell. , vol.23 , Issue.8 , pp. 904-909
    • Rao, N.S.V.1
  • 26
    • 35048820961 scopus 로고    scopus 로고
    • Rao, N.S.V., 2004. A generic sensor fusion problem: Classification and function estimation. In: Multiple Classifier Systems.
    • Rao, N.S.V., 2004. A generic sensor fusion problem: Classification and function estimation. In: Multiple Classifier Systems.
  • 29
    • 0033713738 scopus 로고    scopus 로고
    • Combining multiple classifiers by averaging or by multiplying?
    • Tax D.M.J., van Breukelen M., Duin R.P.W., and Kittler J. Combining multiple classifiers by averaging or by multiplying?. Pattern Recogn. 33 (2000) 1475-1485
    • (2000) Pattern Recogn. , vol.33 , pp. 1475-1485
    • Tax, D.M.J.1    van Breukelen, M.2    Duin, R.P.W.3    Kittler, J.4
  • 30
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1 (2001) 211-244
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 31
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 2 (1992) 241-259
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.