메뉴 건너뛰기




Volumn 20, Issue 6, 2008, Pages 1596-1630

Robust boosting algorithm against mislabeling in multiclass problems

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION; METHODOLOGY; NONLINEAR SYSTEM; STATISTICAL MODEL;

EID: 45749120676     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2007.11-06-400     Document Type: Article
Times cited : (21)

References (17)
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • Irvine: University of California, Department of Information and Computer Science
    • Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. Irvine: University of California, Department of Information and Computer Science.
    • (1998) UCI repository of machine learning databases
    • Blake, C.L.1    Merz, C.J.2
  • 3
    • 0000889845 scopus 로고
    • Binary regression models for contaminated data
    • Copas, J. B. (1988). Binary regression models for contaminated data. Journal of Royal Statistical Society B, 50, 225-265.
    • (1988) Journal of Royal Statistical Society B , vol.50 , pp. 225-265
    • Copas, J.B.1
  • 4
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • Crammer, K., & Singer, K. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2, 265-292.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, K.2
  • 6
    • 1542277531 scopus 로고    scopus 로고
    • A class of logistic type discriminant functions
    • Eguchi, S., & Copas, J. B. (2002). A class of logistic type discriminant functions. Biometrika, 89, 1-22.
    • (2002) Biometrika , vol.89 , pp. 1-22
    • Eguchi, S.1    Copas, J.B.2
  • 7
    • 84945260284 scopus 로고    scopus 로고
    • How to make AdaBoost.M1 work for weak base classifiers by changing only one line of the code
    • Berlin: Springer-Verlag
    • Eibl, G., & Pfeiffer, K. P. (2002). How to make AdaBoost.M1 work for weak base classifiers by changing only one line of the code. In Proceedings of the Thirteenth European Conference on Machine Learning (pp. 72-83). Berlin: Springer-Verlag.
    • (2002) Proceedings of the Thirteenth European Conference on Machine Learning , pp. 72-83
    • Eibl, G.1    Pfeiffer, K.P.2
  • 9
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 10
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337-407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 0142108891 scopus 로고    scopus 로고
    • Boosting and maximum likelihood for exponential models
    • CMU-CS-01-144, Pittsburgh, PA: School of Computer Science, Carnegie Mellon University
    • Lebanon, G., & Lafferty, J. (2001). Boosting and maximum likelihood for exponential models (Tech. Rep. CMU-CS-01-144). Pittsburgh, PA: School of Computer Science, Carnegie Mellon University.
    • (2001) Tech. Rep
    • Lebanon, G.1    Lafferty, J.2
  • 12
  • 13
    • 33748324384 scopus 로고    scopus 로고
    • Vienna, Austria: R Foundation for Statistical Computing. Available online at
    • R Development Core Team. (2006). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available online at http://www.R-project.org.
    • (2006) R: A language and environment for statistical computing
  • 15
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3), 297-336.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 16
    • 1542291080 scopus 로고    scopus 로고
    • Robustifying AdaBoost by adding the naive error rate
    • Takenouchi, T., & Eguchi, S. (2004). Robustifying AdaBoost by adding the naive error rate. Neural Computation, 16(4), 767-787.
    • (2004) Neural Computation , vol.16 , Issue.4 , pp. 767-787
    • Takenouchi, T.1    Eguchi, S.2
  • 17
    • 34249062309 scopus 로고    scopus 로고
    • On the consistency of multiclass classification methods
    • Tewari, A., & Bartlett, P. L. (2007). On the consistency of multiclass classification methods. Journal of Machine Learning Research, 8, 1007-1025.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1007-1025
    • Tewari, A.1    Bartlett, P.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.