-
1
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2006). Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101, 138-156.
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
3
-
-
0000889845
-
Binary regression models for contaminated data
-
Copas, J. B. (1988). Binary regression models for contaminated data. Journal of Royal Statistical Society B, 50, 225-265.
-
(1988)
Journal of Royal Statistical Society B
, vol.50
, pp. 225-265
-
-
Copas, J.B.1
-
4
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
Crammer, K., & Singer, K. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2, 265-292.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, K.2
-
6
-
-
1542277531
-
A class of logistic type discriminant functions
-
Eguchi, S., & Copas, J. B. (2002). A class of logistic type discriminant functions. Biometrika, 89, 1-22.
-
(2002)
Biometrika
, vol.89
, pp. 1-22
-
-
Eguchi, S.1
Copas, J.B.2
-
7
-
-
84945260284
-
How to make AdaBoost.M1 work for weak base classifiers by changing only one line of the code
-
Berlin: Springer-Verlag
-
Eibl, G., & Pfeiffer, K. P. (2002). How to make AdaBoost.M1 work for weak base classifiers by changing only one line of the code. In Proceedings of the Thirteenth European Conference on Machine Learning (pp. 72-83). Berlin: Springer-Verlag.
-
(2002)
Proceedings of the Thirteenth European Conference on Machine Learning
, pp. 72-83
-
-
Eibl, G.1
Pfeiffer, K.P.2
-
9
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
10
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337-407.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
11
-
-
0142108891
-
Boosting and maximum likelihood for exponential models
-
CMU-CS-01-144, Pittsburgh, PA: School of Computer Science, Carnegie Mellon University
-
Lebanon, G., & Lafferty, J. (2001). Boosting and maximum likelihood for exponential models (Tech. Rep. CMU-CS-01-144). Pittsburgh, PA: School of Computer Science, Carnegie Mellon University.
-
(2001)
Tech. Rep
-
-
Lebanon, G.1
Lafferty, J.2
-
12
-
-
2942627097
-
Information geometry of u-boost and Bregman divergence
-
Murata, N., Takenouchi, T., Kanamori, T., & Eguchi, S. (2004). Information geometry of u-boost and Bregman divergence. Neural Computation, 16, 1437-1481.
-
(2004)
Neural Computation
, vol.16
, pp. 1437-1481
-
-
Murata, N.1
Takenouchi, T.2
Kanamori, T.3
Eguchi, S.4
-
13
-
-
33748324384
-
-
Vienna, Austria: R Foundation for Statistical Computing. Available online at
-
R Development Core Team. (2006). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available online at http://www.R-project.org.
-
(2006)
R: A language and environment for statistical computing
-
-
-
14
-
-
0342502195
-
Soft margins for AdaBoost
-
Rätsch, G., Onoda, T., & Müller, K.-R. (2001). Soft margins for AdaBoost. Machine Learning, 42(3), 287-320.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
15
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3), 297-336.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
16
-
-
1542291080
-
Robustifying AdaBoost by adding the naive error rate
-
Takenouchi, T., & Eguchi, S. (2004). Robustifying AdaBoost by adding the naive error rate. Neural Computation, 16(4), 767-787.
-
(2004)
Neural Computation
, vol.16
, Issue.4
, pp. 767-787
-
-
Takenouchi, T.1
Eguchi, S.2
-
17
-
-
34249062309
-
On the consistency of multiclass classification methods
-
Tewari, A., & Bartlett, P. L. (2007). On the consistency of multiclass classification methods. Journal of Machine Learning Research, 8, 1007-1025.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1007-1025
-
-
Tewari, A.1
Bartlett, P.L.2
|