메뉴 건너뛰기




Volumn 7, Issue 2, 2014, Pages 1420-1450

Successive nonnegative projection algorithm for robust nonnegative blind source separation

Author keywords

Hyperspectral unmixing; Nonnegative blind source separation; Nonnegative matrix factorization; Pure pixel assumption; Robustness to noise; Separability

Indexed keywords

BLIND SOURCE SEPARATION; SPECTROSCOPY;

EID: 84903386859     PISSN: None     EISSN: 19364954     Source Type: Journal    
DOI: 10.1137/130946782     Document Type: Article
Times cited : (103)

References (34)
  • 1
    • 84880258085 scopus 로고    scopus 로고
    • Hyperspectral data geometry based estimation of number of endmembers using p-norm based pure pixel identification
    • A. Ambikapathi, T.-H. Chan, C.-Y. Chi, and K. Keizer, Hyperspectral data geometry based estimation of number of endmembers using p-norm based pure pixel identification, IEEE Trans. Geosci. Remote Sensing, 51 (2013), pp. 2753-2769.
    • (2013) IEEE Trans. Geosci. Remote Sensing , vol.51 , pp. 2753-2769
    • Ambikapathi, A.1    Chan, T.-H.2    Chi, C.-Y.3    Keizer, K.4
  • 8
    • 80455174042 scopus 로고    scopus 로고
    • A simplex volume maximization framework for hyperspectral endmember extraction
    • T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, A simplex volume maximization framework for hyperspectral endmember extraction, IEEE Trans. Geosci. Remote Sensing, 49 (2011), pp. 4177-4193.
    • (2011) IEEE Trans. Geosci. Remote Sensing , vol.49 , pp. 4177-4193
    • Chan, T.-H.1    Ma, W.-K.2    Ambikapathi, A.3    Chi, C.-Y.4
  • 9
    • 54749083549 scopus 로고    scopus 로고
    • A convex analysis framework for blind separation of non-negative sources
    • T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, A convex analysis framework for blind separation of non-negative sources, IEEE Trans. Signal Process., 56 (2008), pp. 5120-5134.
    • (2008) IEEE Trans. Signal Process , vol.56 , pp. 5120-5134
    • Chan, T.-H.1    Ma, W.-K.2    Chi, C.-Y.3    Wang, Y.4
  • 10
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • K. Devarajan, Nonnegative matrix factorization: An analytical and interpretive tool in computational biology, PLoS Comput. Biol., 4 (2008), e1000029.
    • (2008) PLoS Comput. Biol , vol.4
    • Devarajan, K.1
  • 13
    • 84862519707 scopus 로고    scopus 로고
    • A convex model for nonnegative matrix factorization and dimensionality reduction on physical space
    • E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin, A convex model for nonnegative matrix factorization and dimensionality reduction on physical space, IEEE Trans. Image Process., 21 (2012), pp. 3239-3252.
    • (2012) IEEE Trans. Image Process , vol.21 , pp. 3239-3252
    • Esser, E.1    Moller, M.2    Osher, S.3    Sapiro, G.4    Xin, J.5
  • 15
    • 84870868704 scopus 로고    scopus 로고
    • Sparse and unique nonnegative matrix factorization through data preprocessing
    • N. Gillis, Sparse and unique nonnegative matrix factorization through data preprocessing, J. Mach. Learn. Res., 13 (2012), pp. 3349-3386.
    • (2012) J. Mach. Learn. Res , vol.13 , pp. 3349-3386
    • Gillis, N.1
  • 16
    • 84887361620 scopus 로고    scopus 로고
    • Robustness analysis of Hottopixx, a linear programming model for factoring nonnegative matrices
    • N. Gillis, Robustness analysis of Hottopixx, a linear programming model for factoring nonnegative matrices, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1189-1212.
    • (2013) SIAM J. Matrix Anal. Appl , vol.34 , pp. 1189-1212
    • Gillis, N.1
  • 17
    • 84924200264 scopus 로고    scopus 로고
    • The why and how of nonnegative matrix factorization
    • J.A.K. Suykens, M. Signoretto, and A. Argyriou, eds., Chapman & Hall/CRC, Boca Raton, FL, to appear (arXiv:1401.5226
    • N. Gillis, The why and how of nonnegative matrix factorization, in Regularization, Optimization, Kernels, and Support Vector Machines, J.A.K. Suykens, M. Signoretto, and A. Argyriou, eds., Chapman & Hall/CRC, Boca Raton, FL, to appear (arXiv:1401.5226).
    • In Regularization, Optimization, Kernels, and Support Vector Machines
    • Gillis, N.1
  • 18
    • 84861111031 scopus 로고    scopus 로고
    • Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization
    • N. Gillis and F. Glineur, Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization, Neural Comput., 24 (2012), pp. 1085-1105.
    • (2012) Neural Comput , vol.24 , pp. 1085-1105
    • Gillis, N.1    Glineur, F.2
  • 19
    • 84901625045 scopus 로고    scopus 로고
    • Robust near-separable nonnegative matrix factorization using linear optimization
    • N. Gillis and R. Luce, Robust near-separable nonnegative matrix factorization using linear optimization, J. Mach. Learn. Res., 15 (2014), pp. 1249-1280.
    • (2014) J. Mach. Learn. Res , vol.15 , pp. 1249-1280
    • Gillis, N.1    Luce, R.2
  • 21
    • 84897475291 scopus 로고    scopus 로고
    • Fast and robust recursive algorithms for separable nonnegative matrix factorization
    • N. Gillis and S.A. Vavasis, Fast and robust recursive algorithms for separable nonnegative matrix factorization, IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014), pp. 698-714.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell , vol.36 , pp. 698-714
    • Gillis, N.1    Vavasis, S.A.2
  • 22
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed., The Johns Hopkins University Press, Baltimore, MD
    • G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    van Loan, C.F.2
  • 26
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D.D. Lee and H.S. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, 401 (1999), pp. 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 28
    • 84899876632 scopus 로고    scopus 로고
    • Ellipsoidal rounding for nonnegative matrix factorization under noisy separability
    • T. Mizutani, Ellipsoidal rounding for nonnegative matrix factorization under noisy separability, J.Mach. Learn. Res., 15 (2014), pp. 1011-1039.
    • (2014) J.Mach. Learn. Res , vol.15 , pp. 1011-1039
    • Mizutani, T.1
  • 30
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • V.P. Pauca, J. Piper, and R.J. Plemmons, Nonnegative matrix factorization for spectral data analysis, Lin. Alg. Appl., 406 (2006), pp. 29-47.
    • (2006) Lin. Alg. Appl , vol.406 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 31
    • 1642290713 scopus 로고    scopus 로고
    • Automatic spectral target recognition in hyperspectral imagery
    • H. Ren and C.-I. Chang, Automatic spectral target recognition in hyperspectral imagery, IEEE Trans. Aero. Electron. Syst., 39 (2003), pp. 1232-1249.
    • (2003) IEEE Trans. Aero. Electron. Syst , vol.39 , pp. 1232-1249
    • Ren, H.1    Chang, C.-I.2
  • 33
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • S.A. Vavasis, On the complexity of nonnegative matrix factorization, SIAM J. Optim., 20 (2009), pp. 1364-1377.
    • (2009) SIAM J. Optim , vol.20 , pp. 1364-1377
    • Vavasis, S.A.1
  • 34
    • 79960845914 scopus 로고    scopus 로고
    • Community discovery using nonnegative matrix factorization
    • F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding, Community discovery using nonnegative matrix factorization, Data Min. Knowl. Discov., 22 (2011), pp. 493-521.
    • (2011) Data Min. Knowl. Discov , vol.22 , pp. 493-521
    • Wang, F.1    Li, T.2    Wang, X.3    Zhu, S.4    Ding, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.