메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1-10

Learning topic models - Going beyond SVD

Author keywords

[No Author keywords available]

Indexed keywords

ALLOCATION MODEL; APPLICATION AREA; CLASSIFICATION OF DATA; CONVEX COMBINATIONS; LATENT DIRICHLET ALLOCATION; NONNEGATIVE MATRIX FACTORIZATION; POLYNOMIAL-TIME ALGORITHMS; PROBABILISTIC MODELS; REAL LIFE DATA; REALISTIC MODEL; SIMILAR MODELS; THEMATIC STRUCTURES; THEORETICAL RESULT; THEORETICAL STUDY; TOPIC MODEL; TOPIC VECTOR;

EID: 84871960604     PISSN: 02725428     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FOCS.2012.49     Document Type: Conference Paper
Times cited : (365)

References (35)
  • 3
    • 84862609231 scopus 로고    scopus 로고
    • Computing a nonnegative matrix factorization - Provably
    • S. Arora, R. Ge, R. Kannan and A. Moitra. Computing a nonnegative matrix factorization - provably. STOC 2012.
    • (2012) STOC
    • Arora, S.1    Ge, R.2    Kannan, R.3    Moitra, A.4
  • 5
    • 84861170800 scopus 로고    scopus 로고
    • Introduction to probabilistic topic models
    • D. Blei. Introduction to probabilistic topic models. Communications of the ACM, pp. 77-84, 2012.
    • Communications of the ACM , vol.2012 , pp. 77-84
    • Blei, D.1
  • 6
    • 84871945581 scopus 로고    scopus 로고
    • Personal communication
    • D. Blei. Personal communication.
    • Blei, D.1
  • 7
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet Allocation
    • Preliminary version in NIPS 2001
    • D. Blei, A. Ng and M. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research, pp. 993-1022, 2003. Preliminary version in NIPS 2001.
    • (2003) Journal of Machine Learning Research , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 9
    • 34250772913 scopus 로고    scopus 로고
    • Dynamic topic models
    • D. Blei and J. Lafferty. Dynamic topic models. ICML, pp. 113-120, 2006.
    • (2006) ICML , pp. 113-120
    • Blei, D.1    Lafferty, J.2
  • 10
    • 9244259543 scopus 로고
    • Nonnegative ranks, decompositions and factorizations of nonnegative matices
    • J. Cohen and U. Rothblum. Nonnegative ranks, decompositions and factorizations of nonnegative matices. Linear Algebra and its Applications, pp. 149-168, 1993.
    • (1993) Linear Algebra and Its Applications , pp. 149-168
    • Cohen, J.1    Rothblum, U.2
  • 13
    • 23744456750 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give the correct decomposition into parts?
    • D. Donoho and V. Stodden. When does non-negative matrix factorization give the correct decomposition into parts? NIPS, 2003.
    • (2003) NIPS
    • Donoho, D.1    Stodden, V.2
  • 14
    • 78649934709 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • A. Frank, and A. Asuncion. UCI Machine Learning Repository http://archive.ics.uci.edu/ml. Irvine, CA: University of California, School of Information and Computer Science. 2010.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 17
    • 11244330002 scopus 로고    scopus 로고
    • Probabilistic latent semantic analysis
    • T. Hofmann. Probabilistic latent semantic analysis. UAI, pp. 289-296, 1999.
    • (1999) UAI , pp. 289-296
    • Hofmann, T.1
  • 18
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, pp. 1457-1469, 2004.
    • (2004) Journal of Machine Learning Research , pp. 1457-1469
    • Hoyer, P.1
  • 20
  • 21
    • 35448983933 scopus 로고    scopus 로고
    • Using mixture models for collaborative filtering
    • Preliminary version in STOC 2004
    • J. Kleinberg and M. Sandler. Using mixture models for collaborative filtering. JCSS, pp. 49-69, 2008. Preliminary version in STOC 2004.
    • (2008) JCSS , pp. 49-69
    • Kleinberg, J.1    Sandler, M.2
  • 22
    • 0242456240 scopus 로고    scopus 로고
    • Convergent algorithms for collaborative filtering
    • J. Kleinberg and M. Sandler. Convergent algorithms for collaborative filtering. ACM EC, pp. 1-10, 2003.
    • (2003) ACM EC , pp. 1-10
    • Kleinberg, J.1    Sandler, M.2
  • 23
    • 0035415689 scopus 로고    scopus 로고
    • Recommendation systems: A probabilistic analysis
    • Preliminary version in FOCS 1998
    • R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. Recommendation systems: a probabilistic analysis. JCSS, pp. 42-61, 2001. Preliminary version in FOCS 1998.
    • (2001) JCSS , pp. 42-61
    • Kumar, R.1    Raghavan, P.2    Rajagopalan, S.3    Tomkins, A.4
  • 24
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. Lee and H. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, pp. 788-791, 1999.
    • (1999) Nature , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 25
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. Lee and H. Seung. Algorithms for non-negative matrix factorization. NIPS, pp. 556-562, 2000.
    • (2000) NIPS , pp. 556-562
    • Lee, D.1    Seung, H.2
  • 26
    • 33749249041 scopus 로고    scopus 로고
    • Pachinko Allocation: DAG-structured mixture models of topic correlations
    • W. Li and A. McCallum. Pachinko Allocation: DAG-structured mixture models of topic correlations. ICML, pp. 633-640, 2007.
    • (2007) ICML , pp. 633-640
    • Li, W.1    McCallum, A.2
  • 29
    • 0035186726 scopus 로고    scopus 로고
    • Spectral partitioning of random graphs
    • F. McSherry. Spectral partitioning of random graphs. FOCS, pp. 529-537, 2001.
    • (2001) FOCS , pp. 529-537
    • McSherry, F.1
  • 30
    • 0034297382 scopus 로고    scopus 로고
    • Latent semantic indexing: A probabilistic analysis
    • Preliminary version in PODS 1998
    • C. Papadimitriou, P. Raghavan, H. Tamaki and S. Vempala. Latent semantic indexing: a probabilistic analysis. JCSS, pp. 217-235, 2000. Preliminary version in PODS 1998.
    • (2000) JCSS , pp. 217-235
    • Papadimitriou, C.1    Raghavan, P.2    Tamaki, H.3    Vempala, S.4
  • 31
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM Algorithm
    • R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM Algorithm. SIAM Rev., pp. 195-239, 1984.
    • (1984) SIAM Rev. , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 32
    • 85162351232 scopus 로고    scopus 로고
    • Complexity of inference in Latent Dirichlet Allocation
    • D. Sontag and D. Roy. Complexity of inference in Latent Dirichlet Allocation. NIPS, pp. 1008-1016, 2011.
    • (2011) NIPS , pp. 1008-1016
    • Sontag, D.1    Roy, D.2
  • 33
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • W. Xu and X. Liu and Y. Gong. Document clustering based on non-negative matrix factorization. SIGIR, pp. 267-273, 2003.
    • (2003) SIGIR , pp. 267-273
    • Xu, W.1    Liu, X.2    Gong, Y.3
  • 34
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • S. Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization, pp. 1364-1377, 2009.
    • (2009) SIAM Journal on Optimization , pp. 1364-1377
    • Vavasis, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.