메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 1849-1901

Expectation propagation for neural networks with sparsity-promoting priors

Author keywords

Automatic relevance determination; Expectation propagation; Linear model; Multilayer perceptron; Neural network; Sparse prior

Indexed keywords

ALGORITHMS; MATHEMATICAL MODELS; MODEL STRUCTURES; NEURAL NETWORKS;

EID: 84902841459     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (37)

References (44)
  • 2
    • 4444301678 scopus 로고    scopus 로고
    • Improving Cox survival analysis with a neural-Bayesian approach
    • DOI 10.1002/sim.1904
    • Bart Bakker, Tom Heskes, Jan Neijt, and Bert Kappen. Improving Cox survival analysis with a neural-Bayesian approach. Statistics in Medicine, 23:2989-3012, 2004. (Pubitemid 39200136)
    • (2004) Statistics in Medicine , vol.23 , Issue.19 , pp. 2989-3012
    • Bakker, B.1    Heskes, T.2    Neijt, J.3    Kappen, B.4
  • 3
    • 84898931951 scopus 로고    scopus 로고
    • Ensemble learning for multi-layer networks
    • M.I. Jordan, M.J. Kearns, and S.A. Solla, editors MIT Press
    • David Barber and Christopher M. Bishop. Ensemble learning for multi-layer networks. In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 395-401. MIT Press, 1998.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 395-401
    • Barber, D.1    Bishop, C.M.2
  • 4
    • 79952745784 scopus 로고    scopus 로고
    • Approximate marginals in latent Gaussian models
    • Botond Cseke and Tom Heskes. Approximate marginals in latent Gaussian models. Journal of Machine Learning Research, 12:417-454, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 417-454
    • Cseke, B.1    Heskes, T.2
  • 7
    • 78049353036 scopus 로고    scopus 로고
    • Bayesian source localization with the multivariate laplace prior
    • Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams, and A. Culotta, editors Curran Associates, Inc.
    • Marcel van Gerven, Botond Cseke, Robert Oostenveld, and Tom Heskes. Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1901-1909. Curran Associates, Inc., 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1901-1909
    • Van Gerven, M.1    Cseke, B.2    Oostenveld, R.3    Heskes, T.4
  • 8
    • 75249099795 scopus 로고    scopus 로고
    • Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
    • Marcel van Gerven, Botond Cseke, Floris de Lange, and Tom Heskes. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. Neuro Image, 50: 150-161, 2010.
    • (2010) Neuro Image , vol.50 , pp. 150-161
    • Van Gerven, M.1    Cseke, B.2    De Lange, F.3    Heskes, T.4
  • 9
    • 85162557101 scopus 로고    scopus 로고
    • Practical variational inference for neural networks
    • J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Weinberger, editors Curran Associates, Inc.
    • Alex Graves. Practical variational inference for neural networks. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2348-2356. Curran Associates, Inc., 2011.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 2348-2356
    • Graves, A.1
  • 11
    • 84884218772 scopus 로고    scopus 로고
    • Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation
    • Daniel Hernández-Lobato, José M. Hernández-Lobato, and Pierre Dupont. Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation. Journal of Machine Learning Research, 14:1891-1945, 2013.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 1891-1945
    • Hernández-Lobato, D.1    Hernández-Lobato, J.M.2    Dupont, P.3
  • 12
    • 85161971986 scopus 로고    scopus 로고
    • Regulator discovery from gene expression time series of malaria parasites: A hierarchical approach
    • J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors Curran Associates, Inc.
    • José M. Hernández-Lobato, Tjeerd Dijkstra, and Tom Heskes. Regulator discovery from gene expression time series of malaria parasites: a hierarchical approach. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 649-656. Curran Associates, Inc., 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 649-656
    • Hernández-Lobato, J.M.1    Dijkstra, T.2    Heskes, T.3
  • 14
    • 0037174199 scopus 로고    scopus 로고
    • Approximate algorithms for neural-Bayesian approaches
    • DOI 10.1016/S0304-3975(02)00132-9, PII S0304397502001329, Natural Computing
    • Tom Heskes, Bart Bakker, and Bert Kappen. Approximate algorithms for neural-Bayesian approaches. Theoretical Computer Science, 287:219-238, 2002. (Pubitemid 35019167)
    • (2002) Theoretical Computer Science , vol.287 , Issue.1 , pp. 219-238
    • Heskes, T.1    Bakker, B.2    Kappen, B.3
  • 16
    • 27844480834 scopus 로고    scopus 로고
    • Unsupervised variational Bayesian learning of nonlinear models
    • L.K. Saul, Y. Weiss, and L. Bottou, editors MIT Press
    • Antti Honkela and Harri Valpola. Unsupervised variational Bayesian learning of nonlinear models. In L.K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 593-600. MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 593-600
    • Honkela, A.1    Valpola, H.2
  • 18
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks - Review and case studies
    • Jouko Lampinen and Aki Vehtari. Bayesian approach for neural networks - review and case studies. Neural Networks, 14(3):7-24, 2001.
    • (2001) Neural Networks , vol.14 , Issue.3 , pp. 7-24
    • Lampinen, J.1    Vehtari, A.2
  • 19
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • David J. C. Mackay. Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6(3):469-505, 1995.
    • (1995) Network: Computation in Neural Systems , vol.6 , Issue.3 , pp. 469-505
    • Mackay, D.J.C.1
  • 22
    • 27744528998 scopus 로고    scopus 로고
    • Technical report, Microsoft Research, Cambridge
    • Thomas Minka. Power EP. Technical report, Microsoft Research, Cambridge, 2004.
    • (2004) Power EP
    • Minka, T.1
  • 26
    • 56349122110 scopus 로고    scopus 로고
    • Approximations for binary Gaussian process classification
    • Oct.
    • Hannes Nickisch and Carl E. Rasmussen. Approximations for binary Gaussian process classification. Journal of Machine Learning Research, 9:2035-2078, Oct. 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2035-2078
    • Nickisch, H.1    Rasmussen, C.E.2
  • 27
    • 0000286518 scopus 로고    scopus 로고
    • Mean field approach to Bayes learning in feed-forward neural networks
    • Manfred Opper and Ole Winther. Mean field approach to Bayes learning in feed-forward neural networks. Physical Review Letters, 76:1964-1967, Mar. 1996. (Pubitemid 126638911)
    • (1996) Physical Review Letters , vol.76 , Issue.11 , pp. 1964-1967
    • Opper, M.1    Winther, O.2
  • 28
    • 29244438430 scopus 로고    scopus 로고
    • Expectation consistent approximate inference
    • Manfred Opper and Ole Winther. Expectation consistent approximate inference. Journal of Machine Learning Research, 6:2177-2204, December 2005. (Pubitemid 41832629)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 2177-2204
    • Opper, M.1    Winther, O.2
  • 32
    • 79952288583 scopus 로고    scopus 로고
    • Expectation propagation with factorizing distributions: A Gaussian approximation and performance results for simple models
    • Fabiano Ribeiro and Manfred Opper. Expectation propagation with factorizing distributions: A Gaussian approximation and performance results for simple models. Neural Computation, 23(4):1047-1069, 2011.
    • (2011) Neural Computation , vol.23 , Issue.4 , pp. 1047-1069
    • Ribeiro, F.1    Opper, M.2
  • 33
    • 84873476296 scopus 로고    scopus 로고
    • Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood
    • Jaakko Riihimäki, Pasi Jylänki, and Aki Vehtari. Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood. Journal of Machine Learning Research, 14:75-109, 2013.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 75-109
    • Riihimäki, J.1    Jylänki, P.2    Vehtari, A.3
  • 34
    • 84898940342 scopus 로고    scopus 로고
    • Transductive and inductive methods for approximate Gaussian process regression
    • S. Thrun S. Becker and K. Obermayer, editors MIT Press
    • Anton Schwaighofer and Volker Tresp. Transductive and inductive methods for approximate Gaussian process regression. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 953-960. MIT Press, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 953-960
    • Schwaighofer, A.1    Tresp, V.2
  • 35
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • Matthias Seeger. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 759-813
    • Seeger, M.1
  • 37
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • Michael E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, Dec. 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 40
    • 0000704059 scopus 로고    scopus 로고
    • Computation with Infinite Neural Networks
    • Christopher K. I. Williams. Computation with infinite neural networks. Neural Computation, 10(5):1203-1216, 1998. (Pubitemid 128463669)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1203-1216
    • Williams, C.K.I.1
  • 41
    • 0000673452 scopus 로고
    • Bayesian regularisation and pruning using a laplace prior
    • Peter M. Williams. Bayesian regularisation and pruning using a Laplace prior. Neural Computation, 7(1):117-143, 1995.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.M.1
  • 42
    • 84899011114 scopus 로고    scopus 로고
    • Computing with finite and infinite networks
    • T.K. Leen, T.G. Dietterich, and V. Tresp, editors MIT Press
    • Ole Winther. Computing with finite and infinite networks. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 336-342. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 336-342
    • Winther, O.1
  • 43
    • 85161974668 scopus 로고    scopus 로고
    • A new view of automatic relevance determination
    • J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors Curran Associates, Inc.
    • David Wipf and Srikantan Nagarajan. A new view of automatic relevance determination. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1625-1632. Curran Associates, Inc., 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 1625-1632
    • Wipf, D.1    Nagarajan, S.2
  • 44
    • 80052373749 scopus 로고    scopus 로고
    • Latent variable Bayesian models for promoting sparsity
    • Sept.
    • David Wipf, Bhaskar D. Rao, and Srikantan Nagarajan. Latent variable Bayesian models for promoting sparsity. IEEE Transactions on Information Theory, 57(9):6236-6255, Sept. 2011.
    • (2011) IEEE Transactions on Information Theory , vol.57 , Issue.9 , pp. 6236-6255
    • Wipf, D.1    Rao, B.D.2    Nagarajan, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.