-
2
-
-
4444301678
-
Improving Cox survival analysis with a neural-Bayesian approach
-
DOI 10.1002/sim.1904
-
Bart Bakker, Tom Heskes, Jan Neijt, and Bert Kappen. Improving Cox survival analysis with a neural-Bayesian approach. Statistics in Medicine, 23:2989-3012, 2004. (Pubitemid 39200136)
-
(2004)
Statistics in Medicine
, vol.23
, Issue.19
, pp. 2989-3012
-
-
Bakker, B.1
Heskes, T.2
Neijt, J.3
Kappen, B.4
-
3
-
-
84898931951
-
Ensemble learning for multi-layer networks
-
M.I. Jordan, M.J. Kearns, and S.A. Solla, editors MIT Press
-
David Barber and Christopher M. Bishop. Ensemble learning for multi-layer networks. In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 395-401. MIT Press, 1998.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 395-401
-
-
Barber, D.1
Bishop, C.M.2
-
5
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11:625-660, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
7
-
-
78049353036
-
Bayesian source localization with the multivariate laplace prior
-
Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams, and A. Culotta, editors Curran Associates, Inc.
-
Marcel van Gerven, Botond Cseke, Robert Oostenveld, and Tom Heskes. Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1901-1909. Curran Associates, Inc., 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 1901-1909
-
-
Van Gerven, M.1
Cseke, B.2
Oostenveld, R.3
Heskes, T.4
-
8
-
-
75249099795
-
Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
-
Marcel van Gerven, Botond Cseke, Floris de Lange, and Tom Heskes. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. Neuro Image, 50: 150-161, 2010.
-
(2010)
Neuro Image
, vol.50
, pp. 150-161
-
-
Van Gerven, M.1
Cseke, B.2
De Lange, F.3
Heskes, T.4
-
9
-
-
85162557101
-
Practical variational inference for neural networks
-
J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Weinberger, editors Curran Associates, Inc.
-
Alex Graves. Practical variational inference for neural networks. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2348-2356. Curran Associates, Inc., 2011.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
, pp. 2348-2356
-
-
Graves, A.1
-
10
-
-
77955558195
-
Expectation propagation for microarray data classification
-
Daniel Hernández-Lobato, José M. Hernández-Lobato, and A. Suárez. Expectation propagation for microarray data classification. Pattern Recognition Letters, 31(12):1618-1626, 2010.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.12
, pp. 1618-1626
-
-
Hernández-Lobato, D.1
Hernández-Lobato, J.M.2
Suárez, A.3
-
11
-
-
84884218772
-
Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation
-
Daniel Hernández-Lobato, José M. Hernández-Lobato, and Pierre Dupont. Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation. Journal of Machine Learning Research, 14:1891-1945, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1891-1945
-
-
Hernández-Lobato, D.1
Hernández-Lobato, J.M.2
Dupont, P.3
-
12
-
-
85161971986
-
Regulator discovery from gene expression time series of malaria parasites: A hierarchical approach
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors Curran Associates, Inc.
-
José M. Hernández-Lobato, Tjeerd Dijkstra, and Tom Heskes. Regulator discovery from gene expression time series of malaria parasites: a hierarchical approach. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 649-656. Curran Associates, Inc., 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 649-656
-
-
Hernández-Lobato, J.M.1
Dijkstra, T.2
Heskes, T.3
-
14
-
-
0037174199
-
Approximate algorithms for neural-Bayesian approaches
-
DOI 10.1016/S0304-3975(02)00132-9, PII S0304397502001329, Natural Computing
-
Tom Heskes, Bart Bakker, and Bert Kappen. Approximate algorithms for neural-Bayesian approaches. Theoretical Computer Science, 287:219-238, 2002. (Pubitemid 35019167)
-
(2002)
Theoretical Computer Science
, vol.287
, Issue.1
, pp. 219-238
-
-
Heskes, T.1
Bakker, B.2
Kappen, B.3
-
16
-
-
27844480834
-
Unsupervised variational Bayesian learning of nonlinear models
-
L.K. Saul, Y. Weiss, and L. Bottou, editors MIT Press
-
Antti Honkela and Harri Valpola. Unsupervised variational Bayesian learning of nonlinear models. In L.K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 593-600. MIT Press, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 593-600
-
-
Honkela, A.1
Valpola, H.2
-
18
-
-
0035312886
-
Bayesian approach for neural networks - Review and case studies
-
Jouko Lampinen and Aki Vehtari. Bayesian approach for neural networks - review and case studies. Neural Networks, 14(3):7-24, 2001.
-
(2001)
Neural Networks
, vol.14
, Issue.3
, pp. 7-24
-
-
Lampinen, J.1
Vehtari, A.2
-
19
-
-
0001441372
-
Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
-
David J. C. Mackay. Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6(3):469-505, 1995.
-
(1995)
Network: Computation in Neural Systems
, vol.6
, Issue.3
, pp. 469-505
-
-
Mackay, D.J.C.1
-
22
-
-
27744528998
-
-
Technical report, Microsoft Research, Cambridge
-
Thomas Minka. Power EP. Technical report, Microsoft Research, Cambridge, 2004.
-
(2004)
Power EP
-
-
Minka, T.1
-
26
-
-
56349122110
-
Approximations for binary Gaussian process classification
-
Oct.
-
Hannes Nickisch and Carl E. Rasmussen. Approximations for binary Gaussian process classification. Journal of Machine Learning Research, 9:2035-2078, Oct. 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2035-2078
-
-
Nickisch, H.1
Rasmussen, C.E.2
-
27
-
-
0000286518
-
Mean field approach to Bayes learning in feed-forward neural networks
-
Manfred Opper and Ole Winther. Mean field approach to Bayes learning in feed-forward neural networks. Physical Review Letters, 76:1964-1967, Mar. 1996. (Pubitemid 126638911)
-
(1996)
Physical Review Letters
, vol.76
, Issue.11
, pp. 1964-1967
-
-
Opper, M.1
Winther, O.2
-
28
-
-
29244438430
-
Expectation consistent approximate inference
-
Manfred Opper and Ole Winther. Expectation consistent approximate inference. Journal of Machine Learning Research, 6:2177-2204, December 2005. (Pubitemid 41832629)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 2177-2204
-
-
Opper, M.1
Winther, O.2
-
30
-
-
14344253847
-
Predictive automatic relevance determination by expectation propagation
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
Yuan (Alan) Qi, Thomas P. Minka, Rosalind W. Picard, and Zoubin Ghahramani. Predictive automatic relevance determination by expectation propagation. In Proceedings of Twenty-first International Conference on Machine Learning, pages 671-678, 2004. (Pubitemid 40290867)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 671-678
-
-
Qi, Y.1
Minka, T.P.2
Picard, R.W.3
Ghahramani, Z.4
-
32
-
-
79952288583
-
Expectation propagation with factorizing distributions: A Gaussian approximation and performance results for simple models
-
Fabiano Ribeiro and Manfred Opper. Expectation propagation with factorizing distributions: A Gaussian approximation and performance results for simple models. Neural Computation, 23(4):1047-1069, 2011.
-
(2011)
Neural Computation
, vol.23
, Issue.4
, pp. 1047-1069
-
-
Ribeiro, F.1
Opper, M.2
-
33
-
-
84873476296
-
Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood
-
Jaakko Riihimäki, Pasi Jylänki, and Aki Vehtari. Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood. Journal of Machine Learning Research, 14:75-109, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 75-109
-
-
Riihimäki, J.1
Jylänki, P.2
Vehtari, A.3
-
34
-
-
84898940342
-
Transductive and inductive methods for approximate Gaussian process regression
-
S. Thrun S. Becker and K. Obermayer, editors MIT Press
-
Anton Schwaighofer and Volker Tresp. Transductive and inductive methods for approximate Gaussian process regression. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 953-960. MIT Press, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 953-960
-
-
Schwaighofer, A.1
Tresp, V.2
-
35
-
-
44649181578
-
Bayesian inference and optimal design for the sparse linear model
-
Matthias Seeger. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 759-813
-
-
Seeger, M.1
-
37
-
-
0001224048
-
Sparse Bayesian Learning and the Relevance Vector Machine
-
DOI 10.1162/15324430152748236
-
Michael E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, Dec. 2001. (Pubitemid 33687203)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
38
-
-
84877621994
-
GPstuff: Bayesian modeling with Gaussian processes
-
Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville Tolvanen, and Aki Vehtari. GPstuff: Bayesian modeling with Gaussian processes. Journal of Machine Learning Research, 14:1175-1179, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1175-1179
-
-
Vanhatalo, J.1
Riihimäki, J.2
Hartikainen, J.3
Jylänki, P.4
Tolvanen, V.5
Vehtari, A.6
-
40
-
-
0000704059
-
Computation with Infinite Neural Networks
-
Christopher K. I. Williams. Computation with infinite neural networks. Neural Computation, 10(5):1203-1216, 1998. (Pubitemid 128463669)
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1203-1216
-
-
Williams, C.K.I.1
-
41
-
-
0000673452
-
Bayesian regularisation and pruning using a laplace prior
-
Peter M. Williams. Bayesian regularisation and pruning using a Laplace prior. Neural Computation, 7(1):117-143, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 117-143
-
-
Williams, P.M.1
-
42
-
-
84899011114
-
Computing with finite and infinite networks
-
T.K. Leen, T.G. Dietterich, and V. Tresp, editors MIT Press
-
Ole Winther. Computing with finite and infinite networks. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 336-342. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 336-342
-
-
Winther, O.1
-
43
-
-
85161974668
-
A new view of automatic relevance determination
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors Curran Associates, Inc.
-
David Wipf and Srikantan Nagarajan. A new view of automatic relevance determination. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1625-1632. Curran Associates, Inc., 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1625-1632
-
-
Wipf, D.1
Nagarajan, S.2
-
44
-
-
80052373749
-
Latent variable Bayesian models for promoting sparsity
-
Sept.
-
David Wipf, Bhaskar D. Rao, and Srikantan Nagarajan. Latent variable Bayesian models for promoting sparsity. IEEE Transactions on Information Theory, 57(9):6236-6255, Sept. 2011.
-
(2011)
IEEE Transactions on Information Theory
, vol.57
, Issue.9
, pp. 6236-6255
-
-
Wipf, D.1
Rao, B.D.2
Nagarajan, S.3
|