메뉴 건너뛰기




Volumn 14, Issue 1, 2013, Pages 75-109

Nested expectation propagation for gaussian process classification with a multinomial probit likelihood

Author keywords

Approximate inference; Expectation propagation; Gaussian process; Multiclass classification; Multinomial probit

Indexed keywords

APPROXIMATE INFERENCE; EXPECTATION PROPAGATION; GAUSSIAN PROCESSES; MULTI-CLASS CLASSIFICATION; MULTINOMIALS;

EID: 84873476296     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (44)

References (31)
  • 1
    • 84864936855 scopus 로고    scopus 로고
    • Variational multinomial logit gaussian process
    • Kian Ming A. Chai. Variational multinomial logit Gaussian process. Journal of Machine Learning Research, 13:1745-1808, 2012.
    • (2012) Journal Of Machine Learning Research , vol.13 , pp. 1745-1808
    • Chai, K.M.A.1
  • 2
    • 79952745784 scopus 로고    scopus 로고
    • Approximate marginals in latent gaussian models
    • Botond Cseke and Tom Heskes. Approximate marginals in latent Gaussian models. Journal of Machine Learning Research, 12:417-454, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 417-454
    • Cseke, B.1    Heskes, T.2
  • 4
    • 78649934709 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • Andrew Frank and Arthur Asuncion. UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences, 2010. URL http://archive.ics.uci. edu/ml.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 5
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression with gaussian process priors
    • DOI 10.1162/neco.2006.18.8.1790
    • Mark Girolami and Simon Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18:1790-1817, 2006. (Pubitemid 44036395)
    • (2006) Neural Computation , vol.18 , Issue.8 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 6
    • 84864066685 scopus 로고    scopus 로고
    • Data integration for classification problems employing gaussian process priors
    • MIT Press
    • Mark Girolami and Mingjun Zhong. Data integration for classification problems employing Gaussian process priors. In Advances in Neural Information Processing Systems 19, pages 465-472. The MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 465-472
    • Girolami, M.1    Zhong, M.2
  • 11
    • 25444528713 scopus 로고    scopus 로고
    • Rasmussen. Assessing approximate inference for binary gaussian process classification
    • Malte Kuss and Carl E. Rasmussen. Assessing approximate inference for binary Gaussian process classification. Journal of Machine Learning Research, 6:1679-1704, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1679-1704
    • Kuss, M.1    Carl, E.2
  • 14
    • 33947651485 scopus 로고    scopus 로고
    • Divergence measures and message passing
    • Microsoft Research, Cambridge
    • Thomas P. Minka. Divergence measures and message passing. Technical report, Microsoft Research, Cambridge, 2005.
    • (2005) Technical report
    • Minka, T.P.1
  • 17
    • 0002628667 scopus 로고    scopus 로고
    • Regression and classification using gaussian process priors (with discussion)
    • Oxford University Press
    • Radford M. Neal. Regression and classification using Gaussian process priors (with discussion). In Bayesian Statistics 6, pages 475-501. Oxford University Press, 1998.
    • (1998) Bayesian Statistics , vol.6 , pp. 475-501
    • Neal, R.M.1
  • 18
    • 56349122110 scopus 로고    scopus 로고
    • Approximations for binary gaussian process classification
    • Hannes Nickisch and Carl E. Rasmussen. Approximations for binary Gaussian process classification. Journal of Machine Learning Research, 9:2035-2078, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2035-2078
    • Nickisch, H.1    Rasmussen, C.E.2
  • 19
    • 29244438430 scopus 로고    scopus 로고
    • Expectation consistent approximate inference
    • Manfred Opper and OleWinther
    • Manfred Opper and OleWinther. Expectation consistent approximate inference. Journal ofMachine Learning Research, 6:2177-2204, 2005.
    • (2005) Journal ofMachine Learning Research , vol.6 , pp. 2177-2204
  • 22
    • 62849120031 scopus 로고    scopus 로고
    • Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations
    • H°avard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society (Series B), 71(2):319-392, 2009.
    • (2009) Journal of the Royal Statistical Society (Series B) , vol.71 , Issue.2 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 23
    • 43449137394 scopus 로고    scopus 로고
    • Expectation propagation for exponential families
    • Max Planck Institute for Biological Cybernetics, Tubingen, Germany
    • Matthias Seeger. Expectation propagation for exponential families. Technical report, Max Planck Institute for Biological Cybernetics, Tubingen, Germany, 2005.
    • (2005) Technical report
    • Seeger, M.1
  • 24
    • 33745832477 scopus 로고    scopus 로고
    • Sparse gaussian process classification with multiple classes
    • University of California Berkeley, CA
    • Matthias Seeger and Michael Jordan. Sparse Gaussian process classification with multiple classes. Technical report, University of California, Berkeley, CA, 2004.
    • (2004) Technical report
    • Seeger, M.1    Jordan, M.2
  • 25
    • 84864034798 scopus 로고    scopus 로고
    • Efficient nonparametric bayesian modelling with sparse gaussian process approximations
    • Max Planck Institute for Biological Cybernetics, Tubingen, Germany
    • Matthias Seeger, Neil Lawrence, and Ralf Herbrich. Efficient nonparametric Bayesian modelling with sparse Gaussian process approximations. Technical report, Max Planck Institute for Biological Cybernetics, Tubingen, Germany, 2006.
    • (2006) Technical report
    • Seeger, M.1    Lawrence, N.2    Herbrich, R.3
  • 28
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Luke Tierney and Joseph B. Kadane. Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393):82-86, 1986.
    • (1986) Journal of the American Statistical Association , vol.81 , Issue.393 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 30
    • 0036781790 scopus 로고    scopus 로고
    • Bayesian model assessment and comparison using crossvalidation predictive densities
    • Aki Vehtari and Jouko Lampinen. Bayesian model assessment and comparison using crossvalidation predictive densities. Neural Computation, 14(10):2439-2468, 2002.
    • (2002) Neural Computation , vol.14 , Issue.10 , pp. 2439-2468
    • Vehtari, A.1    Lampinen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.