-
1
-
-
84864936855
-
Variational multinomial logit gaussian process
-
Kian Ming A. Chai. Variational multinomial logit Gaussian process. Journal of Machine Learning Research, 13:1745-1808, 2012.
-
(2012)
Journal Of Machine Learning Research
, vol.13
, pp. 1745-1808
-
-
Chai, K.M.A.1
-
3
-
-
4243137056
-
Hybrid monte carlo
-
Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid Monte Carlo. Physics Letters B, 195(2):216-222, 1987.
-
(1987)
Physics Letters B
, vol.195
, Issue.2
, pp. 216-222
-
-
Duane, S.1
Kennedy, A.D.2
Pendleton, B.J.3
Roweth, D.4
-
4
-
-
78649934709
-
-
University of California, Irvine, School of Information and Computer Sciences
-
Andrew Frank and Arthur Asuncion. UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences, 2010. URL http://archive.ics.uci. edu/ml.
-
(2010)
UCI Machine Learning Repository
-
-
Frank, A.1
Asuncion, A.2
-
5
-
-
33745841370
-
Variational Bayesian multinomial probit regression with gaussian process priors
-
DOI 10.1162/neco.2006.18.8.1790
-
Mark Girolami and Simon Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18:1790-1817, 2006. (Pubitemid 44036395)
-
(2006)
Neural Computation
, vol.18
, Issue.8
, pp. 1790-1817
-
-
Girolami, M.1
Rogers, S.2
-
6
-
-
84864066685
-
Data integration for classification problems employing gaussian process priors
-
MIT Press
-
Mark Girolami and Mingjun Zhong. Data integration for classification problems employing Gaussian process priors. In Advances in Neural Information Processing Systems 19, pages 465-472. The MIT Press, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 465-472
-
-
Girolami, M.1
Zhong, M.2
-
11
-
-
25444528713
-
Rasmussen. Assessing approximate inference for binary gaussian process classification
-
Malte Kuss and Carl E. Rasmussen. Assessing approximate inference for binary Gaussian process classification. Journal of Machine Learning Research, 6:1679-1704, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Carl, E.2
-
14
-
-
33947651485
-
Divergence measures and message passing
-
Microsoft Research, Cambridge
-
Thomas P. Minka. Divergence measures and message passing. Technical report, Microsoft Research, Cambridge, 2005.
-
(2005)
Technical report
-
-
Minka, T.P.1
-
17
-
-
0002628667
-
Regression and classification using gaussian process priors (with discussion)
-
Oxford University Press
-
Radford M. Neal. Regression and classification using Gaussian process priors (with discussion). In Bayesian Statistics 6, pages 475-501. Oxford University Press, 1998.
-
(1998)
Bayesian Statistics
, vol.6
, pp. 475-501
-
-
Neal, R.M.1
-
19
-
-
29244438430
-
Expectation consistent approximate inference
-
Manfred Opper and OleWinther
-
Manfred Opper and OleWinther. Expectation consistent approximate inference. Journal ofMachine Learning Research, 6:2177-2204, 2005.
-
(2005)
Journal ofMachine Learning Research
, vol.6
, pp. 2177-2204
-
-
-
20
-
-
14344253847
-
Predictive automatic relevance determination by expectation propagation
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
Yuan Qi, Thomas P. Minka, Rosalind W. Picard, and Zoubin Ghahramani. Predictive automatic relevance determination by expectation propagation. In Proceedings of the 21st International Conference on Machine Learning, pages 671-678, 2004. (Pubitemid 40290867)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 671-678
-
-
Qi, Y.1
Minka, T.P.2
Picard, R.W.3
Ghahramani, Z.4
-
22
-
-
62849120031
-
Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations
-
H°avard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society (Series B), 71(2):319-392, 2009.
-
(2009)
Journal of the Royal Statistical Society (Series B)
, vol.71
, Issue.2
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
23
-
-
43449137394
-
Expectation propagation for exponential families
-
Max Planck Institute for Biological Cybernetics, Tubingen, Germany
-
Matthias Seeger. Expectation propagation for exponential families. Technical report, Max Planck Institute for Biological Cybernetics, Tubingen, Germany, 2005.
-
(2005)
Technical report
-
-
Seeger, M.1
-
24
-
-
33745832477
-
Sparse gaussian process classification with multiple classes
-
University of California Berkeley, CA
-
Matthias Seeger and Michael Jordan. Sparse Gaussian process classification with multiple classes. Technical report, University of California, Berkeley, CA, 2004.
-
(2004)
Technical report
-
-
Seeger, M.1
Jordan, M.2
-
25
-
-
84864034798
-
Efficient nonparametric bayesian modelling with sparse gaussian process approximations
-
Max Planck Institute for Biological Cybernetics, Tubingen, Germany
-
Matthias Seeger, Neil Lawrence, and Ralf Herbrich. Efficient nonparametric Bayesian modelling with sparse Gaussian process approximations. Technical report, Max Planck Institute for Biological Cybernetics, Tubingen, Germany, 2006.
-
(2006)
Technical report
-
-
Seeger, M.1
Lawrence, N.2
Herbrich, R.3
-
28
-
-
84950871099
-
Accurate approximations for posterior moments and marginal densities
-
Luke Tierney and Joseph B. Kadane. Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393):82-86, 1986.
-
(1986)
Journal of the American Statistical Association
, vol.81
, Issue.393
, pp. 82-86
-
-
Tierney, L.1
Kadane, J.B.2
-
29
-
-
78049353036
-
Bayesian source localization with the multivariate laplace prior
-
Marcel van Gerven, Botond Cseke, Robert Oostenveld, and Tom Heskes. Bayesian source localization with the multivariate Laplace prior. In Advances in Neural Information Processing Systems 22, pages 1901-1909, 2009.
-
(2009)
Advances In Neural Information Processing Systems
, vol.22
, pp. 1901-1909
-
-
Gerven, M.V.1
Cseke, B.2
Oostenveld, R.3
Heskes, T.4
-
30
-
-
0036781790
-
Bayesian model assessment and comparison using crossvalidation predictive densities
-
Aki Vehtari and Jouko Lampinen. Bayesian model assessment and comparison using crossvalidation predictive densities. Neural Computation, 14(10):2439-2468, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.10
, pp. 2439-2468
-
-
Vehtari, A.1
Lampinen, J.2
|