메뉴 건너뛰기




Volumn 16, Issue 2, 2015, Pages 232-241

An assessment of computational methods for estimating purity and clonality using genomic data derived from heterogeneous tumor tissue samples

Author keywords

Deconvolution; Mixed cell population; Software; Tumor purity and heterogeneity

Indexed keywords

BIOLOGY; GENE EXPRESSION PROFILING; GENETICS; GENOMICS; HIGH THROUGHPUT SEQUENCING; HUMAN; HUMAN GENOME; NEOPLASM; PATHOLOGY; PROCEDURES; SOFTWARE; STATISTICS AND NUMERICAL DATA;

EID: 84902579580     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbu002     Document Type: Article
Times cited : (60)

References (56)
  • 1
    • 78751684507 scopus 로고    scopus 로고
    • Gene expression deconvolution in clinical samples
    • Zhao Y, Simon R. Gene expression deconvolution in clinical samples. GenomeMed 2010;2:93.
    • (2010) GenomeMed , vol.2 , pp. 93
    • Zhao, Y.1    Simon, R.2
  • 2
    • 79956329337 scopus 로고    scopus 로고
    • Somatic mosaicism in healthy human tissues
    • De S. Somatic mosaicism in healthy human tissues. Trends Genet 2011;27:217-23.
    • (2011) Trends Genet , vol.27 , pp. 217-223
    • De, S.1
  • 3
    • 84860214990 scopus 로고    scopus 로고
    • Intra-tumour heterogeneity:a looking glass for cancer?
    • Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity:a looking glass for cancer? Nat RevCancer 2012;12:323-34.
    • (2012) Nat RevCancer , vol.12 , pp. 323-334
    • Marusyk, A.1    Almendro, V.2    Polyak, K.3
  • 4
    • 84866322681 scopus 로고    scopus 로고
    • Evolutionary pathways in BRCA1-associated breast tumors
    • Martins FC, De S, Almendro V, et al. Evolutionary pathways in BRCA1-associated breast tumors. Cancer Discov 2012;2:503-11.
    • (2012) Cancer Discov , vol.2 , pp. 503-511
    • Martins, F.C.1    De, S.2    Almendro, V.3
  • 5
    • 79953766940 scopus 로고    scopus 로고
    • Tumour evolution inferred by single-cell sequencing
    • Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature 2011;472:90-4.
    • (2011) Nature , vol.472 , pp. 90-94
    • Navin, N.1    Kendall, J.2    Troge, J.3
  • 6
    • 79957815376 scopus 로고    scopus 로고
    • Future medical applications of single-cell sequencing in cancer
    • Navin N, Hicks J. Future medical applications of single-cell sequencing in cancer. GenomeMed 2011;3:31.
    • (2011) GenomeMed , vol.3 , pp. 31
    • Navin, N.1    Hicks, J.2
  • 7
    • 84887610979 scopus 로고    scopus 로고
    • Advances for studying clonal evolution in cancer
    • Ding L, Raphael BJ, Chen F, et al. Advances for studying clonal evolution in cancer. Cancer Lett 2013;340:212-9.
    • (2013) Cancer Lett , vol.340 , pp. 212-219
    • Ding, L.1    Raphael, B.J.2    Chen, F.3
  • 8
    • 84893910301 scopus 로고    scopus 로고
    • Quantitative assessment of single-cell RNA-sequencing methods
    • Wu AR, Neff NF, Kalisky T, et al. Quantitative assessment of single-cell RNA-sequencing methods. NatMethods 2014;11:41-6.
    • (2014) NatMethods , vol.11 , pp. 41-46
    • Wu, A.R.1    Neff, N.F.2    Kalisky, T.3
  • 9
    • 84876471008 scopus 로고    scopus 로고
    • Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis
    • Moignard V, Macaulay IC, Swiers G, et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 2013;15:363-72.
    • (2013) Nat Cell Biol , vol.15 , pp. 363-372
    • Moignard, V.1    Macaulay, I.C.2    Swiers, G.3
  • 10
    • 84857395611 scopus 로고    scopus 로고
    • Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment
    • Bumgarner SL, Neuert G, Voight BF, et al. Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol Cell 2012;45:470-82.
    • (2012) Mol Cell , vol.45 , pp. 470-482
    • Bumgarner, S.L.1    Neuert, G.2    Voight, B.F.3
  • 11
    • 84880530294 scopus 로고    scopus 로고
    • DeMix: deconvolution for mixed cancer transcriptomes using raw measured data
    • Ahn J, Yuan Y, Parmigiani G, et al. DeMix: deconvolution for mixed cancer transcriptomes using raw measured data. Bioinformatics 2013;29:1865-71.
    • (2013) Bioinformatics , vol.29 , pp. 1865-1871
    • Ahn, J.1    Yuan, Y.2    Parmigiani, G.3
  • 12
    • 0035224389 scopus 로고    scopus 로고
    • Separation of samples into their constituents using gene expression data
    • Venet D, Pecasse F, Maenhaut C, et al. Separation of samples into their constituents using gene expression data. Bioinformatics 2001;17(Suppl. 1):S279-87.
    • (2001) Bioinformatics , vol.17 , pp. S279-S287
    • Venet, D.1    Pecasse, F.2    Maenhaut, C.3
  • 13
    • 0037337274 scopus 로고    scopus 로고
    • Computational dissection of tissue contamination for identification of colon cancerspecific expression profiles
    • Tureci O, Ding J, Hilton H, et al. Computational dissection of tissue contamination for identification of colon cancerspecific expression profiles. FASEB J 2003;17:376-85.
    • (2003) FASEB J , vol.17 , pp. 376-385
    • Tureci, O.1    Ding, J.2    Hilton, H.3
  • 14
    • 0042838315 scopus 로고    scopus 로고
    • Expression deconvolution:a reinterpretation of DNA microarray data reveals dynamic changes in cell populations
    • Lu P, Nakorchevskiy A, Marcotte EM. Expression deconvolution:a reinterpretation of DNA microarray data reveals dynamic changes in cell populations. ProcNatlAcad SciUSA 2003;100:10370-5.
    • (2003) ProcNatlAcad SciUSA , vol.100 , pp. 10370-10375
    • Lu, P.1    Nakorchevskiy, A.2    Marcotte, E.M.3
  • 15
    • 4444305034 scopus 로고    scopus 로고
    • Mixture models for assessing differential expression in complex tissues using microarray data
    • Ghosh D. Mixture models for assessing differential expression in complex tissues using microarray data. Bioinformatics 2004;20:1663-9.
    • (2004) Bioinformatics , vol.20 , pp. 1663-1669
    • Ghosh, D.1
  • 16
    • 9144264883 scopus 로고    scopus 로고
    • In silico dissection of cell-type-associated patterns of gene expression in prostate cancer
    • Stuart RO, Wachsman W, Berry CC, et al. In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc Natl Acad Sci USA 2004;101:615-20.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 615-620
    • Stuart, R.O.1    Wachsman, W.2    Berry, C.C.3
  • 17
    • 25444507414 scopus 로고    scopus 로고
    • In silico microdissection of microarray data from heterogeneous cell populations
    • Lahdesmaki H, Shmulevich L, Dunmire V, et al. In silico microdissection of microarray data from heterogeneous cell populations. BMC Bioinformatics 2005;6:54.
    • (2005) BMC Bioinformatics , vol.6 , pp. 54
    • Lahdesmaki, H.1    Shmulevich, L.2    Dunmire, V.3
  • 18
    • 33748351161 scopus 로고    scopus 로고
    • Computational expression deconvolution in a complex mammalian organ
    • Wang M, Master SR, Chodosh LA. Computational expression deconvolution in a complex mammalian organ. BMC Bioinformatics 2006;7:328.
    • (2006) BMC Bioinformatics , vol.7 , pp. 328
    • Wang, M.1    Master, S.R.2    Chodosh, L.A.3
  • 19
    • 77957782844 scopus 로고    scopus 로고
    • Probabilistic analysis of gene expression measurements from heterogeneous tissues
    • Erkkila T, Lehmusvaara S, Ruusuvuori P, et al. Probabilistic analysis of gene expression measurements from heterogeneous tissues. Bioinformatics 2010;26:2571-7.
    • (2010) Bioinformatics , vol.26 , pp. 2571-2577
    • Erkkila, T.1    Lehmusvaara, S.2    Ruusuvuori, P.3
  • 20
    • 77951634577 scopus 로고    scopus 로고
    • Cell type-specific gene expression differences in complex tissues
    • Shen-Orr SS, Tibshirani R, Khatri P, et al. Cell type-specific gene expression differences in complex tissues. NatMethods 2010;7:287-9.
    • (2010) NatMethods , vol.7 , pp. 287-289
    • Shen-Orr, S.S.1    Tibshirani, R.2    Khatri, P.3
  • 21
    • 84872023313 scopus 로고    scopus 로고
    • PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions
    • Qiao W, Quon G, Csaszar E, et al. PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoSComput Biol 2012;8:e1002838.
    • (2012) PLoSComput Biol , vol.8 , pp. e1002838
    • Qiao, W.1    Quon, G.2    Csaszar, E.3
  • 22
    • 36948998970 scopus 로고    scopus 로고
    • Electronically subtracting expression patterns from a mixed cell population
    • Gosink MM, Petrie HT, Tsinoremas NF. Electronically subtracting expression patterns from a mixed cell population. Bioinformatics 2007;23:3328-34.
    • (2007) Bioinformatics , vol.23 , pp. 3328-3334
    • Gosink, M.M.1    Petrie, H.T.2    Tsinoremas, N.F.3
  • 23
    • 77952104584 scopus 로고    scopus 로고
    • Statistical expression deconvolution from mixed tissue samples
    • Clarke J, Seo P, Clarke B. Statistical expression deconvolution from mixed tissue samples. Bioinformatics 2010;26:1043-9.
    • (2010) Bioinformatics , vol.26 , pp. 1043-1049
    • Clarke, J.1    Seo, P.2    Clarke, B.3
  • 24
    • 33846591339 scopus 로고    scopus 로고
    • A hidden-state Markov model for cell population deconvolution
    • Roy S, Lane T, Allen C, et al. A hidden-state Markov model for cell population deconvolution. J Comput Biol 2006;13:1749-74.
    • (2006) J Comput Biol , vol.13 , pp. 1749-1774
    • Roy, S.1    Lane, T.2    Allen, C.3
  • 25
    • 84860370062 scopus 로고    scopus 로고
    • Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study
    • Gaujoux R, Seoighe C. Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study. Infect Genet Evol 2012;12:913-21.
    • (2012) Infect Genet Evol , vol.12 , pp. 913-921
    • Gaujoux, R.1    Seoighe, C.2
  • 26
    • 77249157887 scopus 로고    scopus 로고
    • Biomarker discovery in heterogeneous tissue samples - taking the insilico deconfounding approach
    • Repsilber D, Kern S, Telaar A, et al. Biomarker discovery in heterogeneous tissue samples - taking the insilico deconfounding approach. BMC Bioinformatics 2010;11:27.
    • (2010) BMC Bioinformatics , vol.11 , pp. 27
    • Repsilber, D.1    Kern, S.2    Telaar, A.3
  • 27
    • 70350697843 scopus 로고    scopus 로고
    • ISOLATE: a computational strategy for identifying the primary origin of cancers using high-throughput sequencing
    • Quon G, Morris Q. ISOLATE: a computational strategy for identifying the primary origin of cancers using high-throughput sequencing. Bioinformatics 2009;25:2882-9.
    • (2009) Bioinformatics , vol.25 , pp. 2882-2889
    • Quon, G.1    Morris, Q.2
  • 28
    • 84876213240 scopus 로고    scopus 로고
    • DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data
    • Gong T, Szustakowski JD. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics 2013;29:1083-5.
    • (2013) Bioinformatics , vol.29 , pp. 1083-1085
    • Gong, T.1    Szustakowski, J.D.2
  • 29
    • 81155135154 scopus 로고    scopus 로고
    • Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples
    • Gong T, Hartmann N, Kohane IS, et al. Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples. PLoS One 2011;6:e27156.
    • (2011) PLoS One , vol.6 , pp. e27156
    • Gong, T.1    Hartmann, N.2    Kohane, I.S.3
  • 30
    • 84886802138 scopus 로고    scopus 로고
    • A mixture model for expression deconvolution from RNA-seq in heterogeneous tissues
    • Li Y, Xie X. A mixture model for expression deconvolution from RNA-seq in heterogeneous tissues. BMC Bioinformatics 2013;14(Suppl. 5):S11.
    • (2013) BMC Bioinformatics , vol.14 , pp. S11
    • Li, Y.1    Xie, X.2
  • 31
    • 84885673911 scopus 로고    scopus 로고
    • Inferring tumour purity and stromal and immune cell admixture from expression data
    • Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 2013;4:2612.
    • (2013) Nat Commun , vol.4 , pp. 2612
    • Yoshihara, K.1    Shahmoradgoli, M.2    Martinez, E.3
  • 32
    • 84860782006 scopus 로고    scopus 로고
    • Absolute quantification of somatic DNA alterations in human cancer
    • Carter SL, Cibulskis K, Helman E, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012;30:413-21.
    • (2012) Nat Biotechnol , vol.30 , pp. 413-421
    • Carter, S.L.1    Cibulskis, K.2    Helman, E.3
  • 33
    • 84868561050 scopus 로고    scopus 로고
    • Data analysis considerations for detecting copy number changes in formalin-fixed, paraffin-embedded tissues
    • Jacobs S. Data analysis considerations for detecting copy number changes in formalin-fixed, paraffin-embedded tissues. Cold SpringHarb Protoc 2012;2012:1203-9.
    • (2012) Cold SpringHarb Protoc , vol.2012 , pp. 1203-1209
    • Jacobs, S.1
  • 34
    • 43449135901 scopus 로고    scopus 로고
    • Major copy proportion analysis of tumor samples using SNP arrays
    • Li C, Beroukhim R, Weir BA, et al. Major copy proportion analysis of tumor samples using SNP arrays. BMC Bioinformatics 2008;9:204.
    • (2008) BMC Bioinformatics , vol.9 , pp. 204
    • Li, C.1    Beroukhim, R.2    Weir, B.A.3
  • 36
    • 84865558202 scopus 로고    scopus 로고
    • PurityEst: estimating purity of human tumor samples using next-generation sequencing data
    • Su X, Zhang L, Zhang J, et al. PurityEst: estimating purity of human tumor samples using next-generation sequencing data. Bioinformatics 2012;28:2265-6.
    • (2012) Bioinformatics , vol.28 , pp. 2265-2266
    • Su, X.1    Zhang, L.2    Zhang, J.3
  • 37
    • 84859249611 scopus 로고    scopus 로고
    • JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data
    • Roth A, Ding J, Morin R, et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data. Bioinformatics 2012;28:907-13.
    • (2012) Bioinformatics , vol.28 , pp. 907-913
    • Roth, A.1    Ding, J.2    Morin, R.3
  • 38
    • 84880560760 scopus 로고    scopus 로고
    • PurBayes: estimating tumor cellularity and subclonality in next-generation sequencing data
    • Larson NB, Fridley BL. PurBayes: estimating tumor cellularity and subclonality in next-generation sequencing data. Bioinformatics 2013;29:1888-9.
    • (2013) Bioinformatics , vol.29 , pp. 1888-1889
    • Larson, N.B.1    Fridley, B.L.2
  • 39
    • 84880934918 scopus 로고    scopus 로고
    • THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data
    • Oesper L, Mahmoody A, Raphael BJ. THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data. Genome Biol 2013;14:R80.
    • (2013) Genome Biol , vol.14 , pp. R80
    • Oesper, L.1    Mahmoody, A.2    Raphael, B.J.3
  • 40
    • 84891370404 scopus 로고    scopus 로고
    • EXPANDS: expanding ploidy and allele frequency on nested subpopulations
    • Andor N, Harness JV, Muller S, et al. EXPANDS: expanding ploidy and allele frequency on nested subpopulations. Bioinformatics 2014;30:50-60.
    • (2014) Bioinformatics , vol.30 , pp. 50-60
    • Andor, N.1    Harness, J.V.2    Muller, S.3
  • 41
    • 84855185866 scopus 로고    scopus 로고
    • Correcting for cancer genome size and tumour cell content enables better estimation of copy number alterations from next-generation sequence data
    • Gusnanto A, Wood HM, Pawitan Y, et al. Correcting for cancer genome size and tumour cell content enables better estimation of copy number alterations from next-generation sequence data. Bioinformatics 2012;28:40-7.
    • (2012) Bioinformatics , vol.28 , pp. 40-47
    • Gusnanto, A.1    Wood, H.M.2    Pawitan, Y.3
  • 42
    • 84883063871 scopus 로고    scopus 로고
    • Virmid: accurate detection of somatic mutations with sample impurity inference
    • Kim S, Jeong K, Bhutani K, et al. Virmid: accurate detection of somatic mutations with sample impurity inference. Genome Biol 2013;14:R90.
    • (2013) Genome Biol , vol.14 , pp. R90
    • Kim, S.1    Jeong, K.2    Bhutani, K.3
  • 43
    • 84874025843 scopus 로고    scopus 로고
    • Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
    • Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013;31:213-9.
    • (2013) Nat Biotechnol , vol.31 , pp. 213-219
    • Cibulskis, K.1    Lawrence, M.S.2    Carter, S.L.3
  • 44
    • 84856565531 scopus 로고    scopus 로고
    • SomaticSniper: identification of somatic point mutations in whole genome sequencing data
    • Larson DE, Harris CC, Chen K, et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 2012;28:311-7.
    • (2012) Bioinformatics , vol.28 , pp. 311-317
    • Larson, D.E.1    Harris, C.C.2    Chen, K.3
  • 45
    • 84864153492 scopus 로고    scopus 로고
    • Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs
    • Saunders CT, Wong WS, Swamy S, et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 2012;28:1811-7.
    • (2012) Bioinformatics , vol.28 , pp. 1811-1817
    • Saunders, C.T.1    Wong, W.S.2    Swamy, S.3
  • 46
    • 84873519286 scopus 로고    scopus 로고
    • Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity
    • De S, Shaknovich R, Riester M, et al. Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity. PLoS Genet 2013;9:e1003137.
    • (2013) PLoS Genet , vol.9 , pp. e1003137
    • De, S.1    Shaknovich, R.2    Riester, M.3
  • 47
    • 84884963475 scopus 로고    scopus 로고
    • TrAp: a tree approach for fingerprinting subclonal tumor composition
    • Strino F, Parisi F, Micsinai M, et al. TrAp: a tree approach for fingerprinting subclonal tumor composition. Nucleic Acids Res 2013;41:e165.
    • (2013) Nucleic Acids Res , vol.41 , pp. e165
    • Strino, F.1    Parisi, F.2    Micsinai, M.3
  • 48
    • 84874102335 scopus 로고    scopus 로고
    • Evolution and impact of subclonal mutations in chronic lymphocytic leukemia
    • Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013;152:714-26.
    • (2013) Cell , vol.152 , pp. 714-726
    • Landau, D.A.1    Carter, S.L.2    Stojanov, P.3
  • 49
    • 84891472019 scopus 로고    scopus 로고
    • Deconvoluting complex tissues for expression quantitative trait locus-based analyses
    • Seo JH, Li Q, Fatima A, et al. Deconvoluting complex tissues for expression quantitative trait locus-based analyses. PhilosTrans RSoc Lond B Biol Sci 2013;368:20120363.
    • (2013) PhilosTrans RSoc Lond B Biol Sci , vol.368 , pp. 20120363
    • Seo, J.H.1    Li, Q.2    Fatima, A.3
  • 50
    • 84884407337 scopus 로고    scopus 로고
    • Tumour heterogeneity in the clinic
    • Bedard PL, Hansen AR, Ratain MJ, et al. Tumour heterogeneity in the clinic. Nature 2013;501:355-64.
    • (2013) Nature , vol.501 , pp. 355-364
    • Bedard, P.L.1    Hansen, A.R.2    Ratain, M.J.3
  • 51
    • 84884365015 scopus 로고    scopus 로고
    • The causes and consequences of genetic heterogeneity in cancer evolution
    • Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013;501:338-45.
    • (2013) Nature , vol.501 , pp. 338-345
    • Burrell, R.A.1    McGranahan, N.2    Bartek, J.3
  • 52
    • 84884377472 scopus 로고    scopus 로고
    • Tumour heterogeneity and cancer cell plasticity
    • Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature 2013;501:328-37.
    • (2013) Nature , vol.501 , pp. 328-337
    • Meacham, C.E.1    Morrison, S.J.2
  • 53
    • 84880507665 scopus 로고    scopus 로고
    • Mutational heterogeneity in cancer and the search for new cancer-associated genes
    • Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013;499:214-8.
    • (2013) Nature , vol.499 , pp. 214-218
    • Lawrence, M.S.1    Stojanov, P.2    Polak, P.3
  • 54
    • 84885735554 scopus 로고    scopus 로고
    • Mutational landscape and significance across 12 major cancer types
    • Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature 2013;502:333-9.
    • (2013) Nature , vol.502 , pp. 333-339
    • Kandoth, C.1    McLellan, M.D.2    Vandin, F.3
  • 55
    • 84857527064 scopus 로고    scopus 로고
    • DNA sequencing:clinical applications of new DNA sequencing technologies
    • Dewey FE, Pan S, Wheeler MT, et al. DNA sequencing:clinical applications of new DNA sequencing technologies. Circulation 2012;125:931-44.
    • (2012) Circulation , vol.125 , pp. 931-944
    • Dewey, F.E.1    Pan, S.2    Wheeler, M.T.3
  • 56
    • 84877028141 scopus 로고    scopus 로고
    • Comprehensive molecular portraits of human breast tumours
    • Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61-70.
    • (2012) Nature , vol.490 , pp. 61-70
    • Cancer Genome Atlas, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.