메뉴 건너뛰기




Volumn 54, Issue , 2013, Pages 3-21

Multiobjective genetic classifier selection for random oracles fuzzy rule-based classifier ensembles: How beneficial is the additional diversity?

Author keywords

Bagging; Diversity measures; Evolutionary multiobjective optimization; Fuzzy rule based classifier ensembles; Genetic classifier selection; High complexity datasets; NSGA II; Random oracles

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; FUZZY INFERENCE; FUZZY RULES; MULTIOBJECTIVE OPTIMIZATION;

EID: 84901724783     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2013.08.006     Document Type: Article
Times cited : (24)

References (62)
  • 6
    • 74049152901 scopus 로고    scopus 로고
    • An analysis of the FURIA algorithm for fuzzy rule induction
    • J.C. Hühn, E. Hüllermeier, An analysis of the FURIA algorithm for fuzzy rule induction, in: Advances in Machine Learning I, 2010, pp. 321-344.
    • (2010) Advances in Machine Learning I , pp. 321-344
    • Hühn, J.C.1    Hüllermeier, E.2
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 9
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artificial Intelligence 137 (2002) 239-263.
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 10
    • 0030585190 scopus 로고    scopus 로고
    • Engineering multiversion neural-net systems
    • D. Partridge, W. Yates, Engineering multiversion neural-net systems, Neural Computation 8 (1996) 869-893.
    • (1996) Neural Computation , vol.8 , pp. 869-893
    • Partridge, D.1    Yates, W.2
  • 11
    • 84865770445 scopus 로고    scopus 로고
    • A study on the use of multi-objective genetic algorithms for classifier selection in FURIA-based fuzzy multiclassifiers
    • K. Trawiński, A. Quirin, O. Cordón, A study on the use of multi-objective genetic algorithms for classifier selection in FURIA-based fuzzy multiclassifiers, International Journal of Computational Intelligence Systems 5 (2012) 231-253.
    • (2012) International Journal of Computational Intelligence Systems , vol.5 , pp. 231-253
    • Trawiński, K.1    Quirin, A.2    Cordón, O.3
  • 14
    • 37249010079 scopus 로고    scopus 로고
    • Naïve bayes ensembles with a random oracle
    • Springer-Verlag
    • J.J. Rodríguez, L.I. Kuncheva, Naïve bayes ensembles with a random oracle, Lecture Notes in Computer Science, 4472, Springer-Verlag, 2007, pp. 450-458.
    • (2007) Lecture Notes in Computer Science , vol.4472 , pp. 450-458
    • Rodríguez, J.J.1    Kuncheva, L.I.2
  • 17
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, Machine Learning 40 (2000) 139-157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 20
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire, The strength of weak learnability, Machine Learning 5 (1990) 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.1
  • 22
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • A. Tsymbal, M. Pechenizkiy, P. Cunningham, Diversity in search strategies for ensemble feature selection, Information Fusion 6 (2005) 83-98.
    • (2005) Information Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 23
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their application to handwriting recognition
    • L. Xu, A. Krzyzak, C. Suen, Methods of combining multiple classifiers and their application to handwriting recognition, IEEE Transactions on Systems, Man, and Cybernetics 22 (1992) 418-435.
    • (1992) IEEE Transactions on Systems, Man, and Cybernetics , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.3
  • 25
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, Random forests, Machine Learning 45 (2001) 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 28
    • 33746365419 scopus 로고    scopus 로고
    • Lymphoma prognostication from expression profiling using a combination method of boosting and projective adaptive resonance theory
    • H. Takahashi, H. Honda, Lymphoma prognostication from expression profiling using a combination method of boosting and projective adaptive resonance theory, Journal of Chemical Engineering of Japan 39 (2006) 767-771.
    • (2006) Journal of Chemical Engineering of Japan , vol.39 , pp. 767-771
    • Takahashi, H.1    Honda, H.2
  • 35
    • 70350559903 scopus 로고    scopus 로고
    • Genetic rule selection with a multi-classifier coding scheme for ensemble classifier design
    • Y. Nojima, H. Ishibuchi, Genetic rule selection with a multi-classifier coding scheme for ensemble classifier design, International Journal of Hybrid Intelligent Systems 4 (2007) 157-169.
    • (2007) International Journal of Hybrid Intelligent Systems , vol.4 , pp. 157-169
    • Nojima, Y.1    Ishibuchi, H.2
  • 36
    • 50149088662 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers
    • H. Ishibuchi, Y. Nojima, Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers, International Journal of Hybrid Intelligent Systems 3 (2006) 129-145.
    • (2006) International Journal of Hybrid Intelligent Systems , vol.3 , pp. 129-145
    • Ishibuchi, H.1    Nojima, Y.2
  • 38
    • 0018465664 scopus 로고
    • A composite classifier system design: Concepts and methodology
    • B. Dasarathy, B. Sheela, A composite classifier system design: concepts and methodology, Proceedings of IEEE 67 (1979) 708-713.
    • (1979) Proceedings of IEEE , vol.67 , pp. 708-713
    • Dasarathy, B.1    Sheela, B.2
  • 39
    • 45549107002 scopus 로고    scopus 로고
    • A dynamic overproduce-and-choose strategy for the selection of classifier ensembles
    • E. Dos Santos, R. Sabourin, P. Maupin, A dynamic overproduce-and-choose strategy for the selection of classifier ensembles, Pattern Recognition 41 (2008) 2993-3009.
    • (2008) Pattern Recognition , vol.41 , pp. 2993-3009
    • Dos Santos, E.1    Sabourin, R.2    Maupin, P.3
  • 40
    • 77952772388 scopus 로고    scopus 로고
    • Comparing two genetic overproduce-and-choose strategies for fuzzy rule-based multiclassification systems generated by bagging and mutual information-based feature selection
    • O. Cordón, A. Quirin, Comparing two genetic overproduce-and-choose strategies for fuzzy rule-based multiclassification systems generated by bagging and mutual information-based feature selection, International Journal of Hybrid Intelligent Systems 7 (2010) 45-64.
    • (2010) International Journal of Hybrid Intelligent Systems , vol.7 , pp. 45-64
    • Cordón, O.1    Quirin, A.2
  • 43
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • D. Ruta, B. Gabrys, Classifier selection for majority voting, Information Fusion 6 (2005) 63-81.
    • (2005) Information Fusion , vol.6 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 49
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems: Taxonomy current research trends and prospects
    • F. Herrera, Genetic fuzzy systems: taxonomy current research trends and prospects, Evolutionary Intelligence 1 (2008) 27-46.
    • (2008) Evolutionary Intelligence , vol.1 , pp. 27-46
    • Herrera, F.1
  • 50
    • 79955551124 scopus 로고    scopus 로고
    • A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems
    • O. Cordón, A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems, International Journal of Approximate Reasoning 52 (2011) 894-913.
    • (2011) International Journal of Approximate Reasoning , vol.52 , pp. 894-913
    • Cordón, O.1
  • 51
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • H. Ishibuchi, T. Nakashima, T. Morisawa, Voting in fuzzy rule-based systems for pattern classification problems, Fuzzy Sets and Systems 103 (1999) 223-238.
    • (1999) Fuzzy Sets and Systems , vol.103 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2    Morisawa, T.3
  • 54
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical test for comparing supervised classification learning algorithms
    • T. Dietterich, Approximate statistical test for comparing supervised classification learning algorithms, Neural Computation 10 (1998) 1895-1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.1
  • 55
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research 7 (2006) 1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 56
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • S. García, F. Herrera, An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons, Journal of Machine Learning Research 9 (2008) 2677-2694.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 57
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power, Information Sciences 180 (2010) 2044-2064.
    • (2010) Information Sciences , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 61
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning 51 (2003) 181-207.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 62
    • 84871621085 scopus 로고    scopus 로고
    • A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets
    • Special Issue on Advances in Fuzzy Knowledge Systems: Theory and Application
    • V. López, A. Fernández, M.J. del Jesus, F. Herrera, A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets, Knowledge-Based Systems 38 (2013) 85-104. Special Issue on Advances in Fuzzy Knowledge Systems: Theory and Application.
    • (2013) Knowledge-Based Systems , vol.38 , pp. 85-104
    • López, V.1    Fernández, A.2    Del Jesus, M.J.3    Herrera, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.