메뉴 건너뛰기




Volumn 19, Issue 4, 2011, Pages 589-603

On designing fuzzy rule-based multiclassification systems by combining FURIA with bagging and feature selection

Author keywords

bagging; classifier ensembles; feature selection; FURIA; fuzzy rule based classification systems; fuzzy rule based multiclassification systems; MIFS; Multiclassification systems

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; DECISION TREES; FUZZY INFERENCE; FUZZY RULES;

EID: 79960017575     PISSN: 02184885     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218488511007155     Document Type: Article
Times cited : (29)

References (54)
  • 1
    • 50249175159 scopus 로고    scopus 로고
    • Niching genetic feature selection algorithms applied to the design of fuzzy rule based classification systems in
    • London (UK)
    • J. J. Aguilera, M. Chica, M. J. del Jesus and F. Herrera, Niching genetic feature selection algorithms applied to the design of fuzzy rule based classification systems, in IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), London (UK), 2007, pp. 1794-1799.
    • (2007) IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE) , pp. 1794-1799
    • Aguilera, J.J.1    Chica, M.2    Del Jesus, M.J.3    Herrera, F.4
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti, Using mutual information for selecting features in supervised neural net learning, IEEE Trans. Neural Networks 5(4) (1994) 537-550.
    • (1994) IEEE. Trans. Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 6
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • PII S0031320396001422
    • A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition 30 (1997) 1145-1159. (Pubitemid 127406521)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24(2) (1996) 123-140. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, Random forests, Machine Learning 45(1) (2001) 5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 0032655554 scopus 로고    scopus 로고
    • A proposal on reasoning methods in fuzzy rule-based classification systems
    • O. Cordón, M. J. del Jesus and F. Herrera, A proposal on reasoning methods in fuzzy rule-based classification systems, Int. J. Approximate Reasoning 20 (1999) 21-45.
    • (1999) Int. J. Approximate Reasoning , vol.20 , pp. 21-45
    • Cordón, O.1    Del Jesus, M.J.2    Herrera, F.3
  • 12
    • 77952772388 scopus 로고    scopus 로고
    • Comparing two genetic overproduce-And-choose strategies for fuzzy rule-based multiclassification systems generated by bagging and mutual information-based feature selection
    • O. Cordón and A. Quirin, Comparing two genetic overproduce-And-choose strategies for fuzzy rule-based multiclassification systems generated by bagging and mutual information-based feature selection, Int. J. Hybrid Intelligent Systems 7(1) (2010) 45-64.
    • (2010) Int. J. Hybrid Intelligent Systems , vol.7 , Issue.1 , pp. 45-64
    • Cordón, O.1    Quirin, A.2
  • 13
    • 50149111947 scopus 로고    scopus 로고
    • A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers
    • Witten-Bommerholz (Germany)
    • O. Cordón, A. Quirin and L. Sánchez, A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers, in Third Int. Workshop on Genetic and Evolving Fuzzy Systems (GEFS), Witten-Bommerholz (Germany), 2008, pp. 11-16.
    • (2008) Third Int. Workshop on Genetic and Evolving Fuzzy Systems (GEFS , pp. 11-16
    • Cordón, O.1    Quirin, A.2    Sánchez, L.3
  • 14
    • 55349149050 scopus 로고    scopus 로고
    • On the use of bagging, mutual informationbased feature selection and multicriteria genetic algorithms to design fuzzy rule-based classification ensembles
    • Barcelona (Spain)
    • O. Cordón, A. Quirin and L. Sánchez, On the use of bagging, mutual informationbased feature selection and multicriteria genetic algorithms to design fuzzy rule-based classification ensembles, in Int. Conf. Hybrid Intelligent Systems (HIS), Barcelona (Spain), 2008, pp. 549-554.
    • (2008) Int. Conf. Hybrid Intelligent Systems (HIS) , pp. 549-554
    • Cordón, O.1    Quirin, A.2    Sánchez, L.3
  • 15
    • 3042555856 scopus 로고    scopus 로고
    • Induction of fuzzy-rulebased classifiers with evolutionary boosting algorithms
    • M. J. del Jesus, F. Hoffmann, L. J. Navascues and L. Sánchez, Induction of fuzzy-rulebased classifiers with evolutionary boosting algorithms, IEEE Trans. Fuzzy Systems 12(3) (2004) 296-308.
    • (2004) IEEE. Trans. Fuzzy Systems , vol.12 , Issue.3 , pp. 296-308
    • Del Jesus, M.J.1    Hoffmann, F.2    Navascues, L.J.3    Sánchez, L.4
  • 16
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich, Approximate statistical test for comparing supervised classification learning algorithms, Neural Computation 10(7) (1998) 1895-1923. (Pubitemid 128463689)
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 17
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging boosting, and randomization
    • T. G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine Learning 40(2) (2000) 139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 18
    • 0000049494 scopus 로고
    • Greedy randomized adaptive search procedures
    • T. A. Feo and M. G. C. Resende, Greedy randomized adaptive search procedures, J. Global Optimization 6 (1995) 109-133.
    • (1995) J. Global Optimization , vol.6 , pp. 109-133
    • Feo, T.A.1    Resende, M.G.C.2
  • 19
    • 79960009634 scopus 로고    scopus 로고
    • Handbook of computational statistics: Concepts and methods
    • J. Gentle, W. Härdle and Y. Mori, Handbook of computational statistics: Concepts and methods, Metrika 67(2) (2008) 245-246.
    • (2008) Metrika , vol.67 , Issue.2 , pp. 245-246
    • Gentle, J.1    Härdle, W.2    Mori, Y.3
  • 21
    • 0347411204 scopus 로고    scopus 로고
    • Combining boosting and evolutionary algorithms for learning of fuzzy classification rules
    • F. Hoffmann, Combining boosting and evolutionary algorithms for learning of fuzzy classification rules, Fuzzy Sets and Systems 141(1) (2004) 47-58.
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.1 , pp. 47-58
    • Hoffmann, F.1
  • 22
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • DOI 10.1109/TKDE.2005.50
    • J. Huang and C. X. Ling, Using AUC and accuracy in evaluating learning algorithms, IEEE Trans. Knowledge and Data Engineering 17 (2005) 299-310. (Pubitemid 40320164)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 23
    • 70349591070 scopus 로고    scopus 로고
    • FURIA: An algorithm for unordered fuzzy rule induction
    • J. C. Hühn and E. Hüllermeier, FURIA: An algorithm for unordered fuzzy rule induction, Data Mining and Knowledge Discovery 19(3) (2009) 293-319.
    • (2009) Data Mining and Knowledge Discovery , vol.19 , Issue.3 , pp. 293-319
    • Hühn, J.C.1    Hüllermeier, E.2
  • 24
    • 74049152901 scopus 로고    scopus 로고
    • An analysis of the FURIA algorithm for fuzzy rule induction
    • J. C. Hühn and E. Hüllermeier, An analysis of the FURIA algorithm for fuzzy rule induction, in Advances in Machine Learning I, 2010, pp. 321-344.
    • (2010) Advances in Machine Learning , vol.1 , pp. 321-344
    • Hühn, J.C.1    Hüllermeier, E.2
  • 25
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • PII S0165011498002231
    • H. Ishibuchi, T. Nakashima and T. Morisawa, Voting in fuzzy rule-based systems for pattern classification problems, Fuzzy Sets and Systems 103(2) (1999) 223-238. (Pubitemid 129502321)
    • (1999) Fuzzy Sets and Systems , vol.103 , Issue.2 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2    Morisawa, T.3
  • 27
    • 50149088662 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers
    • H. Ishibuchi and Y. Nojima, Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers, Int. J. Hybrid Intelligent Systems 3(3) (2006) 129-145.
    • (2006) Int. J. Hybrid Intelligent Systems , vol.3 , Issue.3 , pp. 129-145
    • Ishibuchi, H.1    Nojima, Y.2
  • 30
  • 32
    • 70350559903 scopus 로고    scopus 로고
    • Genetic rule selection with a multi-classifier coding scheme for ensemble classifier design
    • Y. Nojima and H. Ishibuchi, Genetic rule selection with a multi-classifier coding scheme for ensemble classifier design, Int. J. Hybrid Intelligent Systems 4(3) (2007) 157-169.
    • (2007) Int. J. Hybrid Intelligent Systems , vol.4 , Issue.3 , pp. 157-169
    • Nojima, Y.1    Ishibuchi, H.2
  • 34
    • 38049036817 scopus 로고    scopus 로고
    • Combining bagging and random subspaces to create better ensembles
    • Springer-Verlag, Berlin, Heidelberg
    • P. Panov and S. Džeroski, Combining bagging and random subspaces to create better ensembles, in IDA'07: Proc. 7th Int. Conf. Intelligent Data Analysis, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 118-129.
    • (2007) IDA'07: Proc. 7th Int. Conf. Intelligent Data Analysis , pp. 118-129
    • Panov, P.1    Džeroski, S.2
  • 35
    • 0030585190 scopus 로고    scopus 로고
    • Engineering multiversion neural-net systems
    • D. Partridge and W. B. Yates, Engineering multiversion neural-net systems, Neural Computation 8(4) (1996) 869-893. (Pubitemid 126449950)
    • (1996) Neural Computation , vol.8 , Issue.4 , pp. 869-893
    • Partridge, D.1    Yates, W.B.2
  • 36
    • 33645514604 scopus 로고    scopus 로고
    • Fuzzy adaptive logic networks as hybrid models of quantitative software engineering
    • W. Pedrycz, A. Breuer and N. J. Pizzi, Fuzzy adaptive logic networks as hybrid models of quantitative software engineering, Intelligent Automation and Soft Computing 12(2) (2006) 189-209. (Pubitemid 43501652)
    • (2006) Intelligent Automation and Soft Computing , vol.12 , Issue.2 , pp. 189-209
    • Pedrycz, W.1    Breuer, A.2    Pizzi, N.J.3
  • 37
    • 33749521633 scopus 로고    scopus 로고
    • Boosting of granular models
    • DOI 10.1016/j.fss.2006.07.005, PII S0165011406002867
    • W. Pedrycz and K.C. Kwak, Boosting of granular models, Fuzzy Sets and Systems 157(22) (2006) 2934-2953. (Pubitemid 44528754)
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.22 , pp. 2934-2953
    • Pedrycz, W.1    Kwak, K.-C.2
  • 39
    • 34548389246 scopus 로고    scopus 로고
    • Boosting fuzzy rules in classification problems under single-winner inference
    • DOI 10.1002/int.20236
    • L. Sánchez and J. Otero, Boosting fuzzy rules in classification problems under singlewinner inference, Int. J. Intelligent Systems 22(9) (2007) 1021-1034. (Pubitemid 47359495)
    • (2007) International Journal of Intelligent Systems , vol.22 , Issue.9 , pp. 1021-1034
    • Sanchez, L.1    Otero, J.2
  • 40
    • 45549107002 scopus 로고    scopus 로고
    • A dynamic overproduce-And-choose strategy for the selection of classifier ensembles
    • E. M. Dos Santos, R. Sabourin and P. Maupin, A dynamic overproduce-And-choose strategy for the selection of classifier ensembles, Pattern Recognition 41(10) (2008) 2993-3009.
    • (2008) Pattern Recognition , vol.41 , Issue.10 , pp. 2993-3009
    • Dos Santos, E.M.1    Sabourin, R.2    Maupin, P.3
  • 41
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire, The strength of weak learnability, Machine Learning 5(2) (1990) 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 44
    • 39149086962 scopus 로고    scopus 로고
    • An experimental study of methods combining multiple classifiers -diversified both by feature selection and bootstrap sampling
    • K. T. Atanassov, J. Kacprzyk, M. Krawczak, and E. Szmidt (eds.), Akademicka OficynaWydawnicza EXIT, Warsaw
    • J. Stefanowski, An experimental study of methods combining multiple classifiers -diversified both by feature selection and bootstrap sampling, in K. T. Atanassov, J. Kacprzyk, M. Krawczak, and E. Szmidt (eds.), Issues in the Representation and Processing of Uncertain and Imprecise Information, Akademicka OficynaWydawnicza EXIT, Warsaw, 2005, pp. 337-354.
    • (2005) Issues in the Representation and Processing of Uncertain and Imprecise Information , pp. 337-354
    • Stefanowski, J.1
  • 45
    • 27544438113 scopus 로고    scopus 로고
    • A new reliable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method
    • DOI 10.1252/jcej.38.763
    • H. Takahashi and H. Honda, A new reliable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method, J. Chem. Eng. Jpn. 38(9) (2005) 763-773. (Pubitemid 41535253)
    • (2005) Journal of Chemical Engineering of Japan , vol.38 , Issue.9 , pp. 763-773
    • Takahashi, H.1    Honda, H.2
  • 46
    • 33746365419 scopus 로고    scopus 로고
    • Lymphoma prognostication from expression profiling using a combination method of boosting and projective adaptive resonance theory
    • DOI 10.1252/jcej.39.767
    • H. Takahashi and H. Honda, Lymphoma prognostication from expression profiling using a combination method of boosting and projective adaptive resonance theory, J. Chem. Eng. Jpn. 39(7) (2006) 767-771. (Pubitemid 44111218)
    • (2006) Journal of Chemical Engineering of Japan , vol.39 , Issue.7 , pp. 767-771
    • Takahashi, H.1    Honda, H.2
  • 47
    • 79960007826 scopus 로고    scopus 로고
    • A study on the use of multi-objective genetic algorithms for classifier selection in furia-based fuzzy multiclassifers
    • in press
    • K. Trawiński, A. Quirin and O. Cordón, A study on the use of multi-objective genetic algorithms for classifier selection in furia-based fuzzy multiclassifers, Int. J. Compu-tational Intelligence Systems, in press.
    • Int. J. Compu-tational Intelligence Systems
    • Trawiński, K.1    Quirin, A.2    Cordón, O.3
  • 48
    • 79960024043 scopus 로고    scopus 로고
    • Bi-criteria genetic selection of bagging fuzzy rule-based multiclassification systems
    • Lisbon (Portugal
    • K. Trawiński, A. Quirin and O. Cordón, Bi-criteria genetic selection of bagging fuzzy rule-based multiclassification systems, in IFSA World Congress-EUSFLAT Conference (IFSA/EUSFLAT), Lisbon (Portugal), 2009, pp. 1514-1519.
    • (2009) IFSA World Congress-EUSFLAT Conference (IFSA/EUSFLAT , pp. 1514-1519
    • Trawiński, K.1    Quirin, A.2    Cordón, O.3
  • 49
    • 77949536389 scopus 로고    scopus 로고
    • On the combination of accuracy and diversity measures for genetic selection of bagging fuzzy rule-based multiclassification systems
    • Pisa (Italy), IEEE Computer Society
    • K. Trawiński, A. Quirin and O. Cordón, On the combination of accuracy and diversity measures for genetic selection of bagging fuzzy rule-based multiclassification systems, in Int. Conf. Intelligent Systems Design and Applications (ISDA), Pisa (Italy), IEEE Computer Society, 2009, pp. 121-127.
    • (2009) Int. Conf. Intelligent Systems Design and Applications (ISDA , pp. 121-127
    • Trawiński, K.1    Quirin, A.2    Cordón, O.3
  • 50
    • 12944302085 scopus 로고    scopus 로고
    • Multi-class clustering and prediction in the analysis of microarray data
    • DOI 10.1016/j.mbs.2004.07.002, PII S0025556404001646
    • C.-A. Tsai, T.-C. Lee, I.-C. Ho, U.-C. Yang, C.-H. Chen and J. J. Chen, Multi-class clustering and prediction in the analysis of microarray data, Math. Biosci. 193(1) (2005) 79-100. (Pubitemid 40175025)
    • (2005) Mathematical Biosciences , vol.193 , Issue.1 , pp. 79-100
    • Tsai, C.-A.1    Lee, T.-C.2    Ho, I.-C.3    Yang, U.-C.4    Chen, C.-H.5    Chen, J.J.6
  • 51
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • A. Tsymbal, M. Pechenizkiy and P. Cunningham, Diversity in search strategies for ensemble feature selection, Information Fusion 6(1) (2005) 83-98.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 52
    • 33744922637 scopus 로고    scopus 로고
    • Boosted ARTMAP: Modifications to fuzzy ARTMAP motivated by boosting theory
    • DOI 10.1016/j.neunet.2005.08.013, PII S089360800500225X
    • S. J. Verzi, G. L. Heileman and M. Georgiopoulos, Boosted ARTMAP: Modifications to fuzzy ARTMAP motivated by boosting theory, Neural Networks 19(4) (2006) 446-468. (Pubitemid 43850232)
    • (2006) Neural Networks , vol.19 , Issue.4 , pp. 446-468
    • Verzi, S.J.1    Heileman, G.L.2    Georgiopoulos, M.3
  • 53
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their application to handwriting recognition
    • L. Xu, A. Krzyzak and C. Y. Suen, Methods of combining multiple classifiers and their application to handwriting recognition, IEEE Transactions on Systems, Man, and Cybernetics 22(3) (1992) 418-435.
    • (1992) IEEE Transactions on Systems, Man, and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.