메뉴 건너뛰기




Volumn 4472 LNCS, Issue , 2007, Pages 450-458

Naïve bayes ensembles with a random oracle

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; CLASSIFICATION (OF INFORMATION); DECISION TREES; PROBLEM SOLVING; RANDOM PROCESSES;

EID: 37249010079     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-72523-7_45     Document Type: Conference Paper
Times cited : (26)

References (16)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36( 1-2): 105-139, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 22944462678 scopus 로고    scopus 로고
    • Naive Bayes classifiers that perform well with continuous variables
    • 17th Australina Conference on AI AI 04, Springer
    • R.R. Bouckaert. Naive Bayes classifiers that perform well with continuous variables. In 17th Australina Conference on AI (AI 04), Lecture Notes in AI. Springer, 2004.
    • (2004) Lecture Notes in AI
    • Bouckaert, R.R.1
  • 3
    • 0003495934 scopus 로고
    • Bagging predictors
    • Technical Report 421, Department of Statistics, University of California, Berkeley
    • L. Breiman. Bagging predictors. Technical Report 421, Department of Statistics, University of California, Berkeley, 1994.
    • (1994)
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparison of classifiers over multiple data sets
    • J. Demšar. Statistical comparison of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 8
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning, 29:103-130, 1997.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 9
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 10
  • 13
    • 33644870376 scopus 로고    scopus 로고
    • On the optimality of naïve bayes with dependent binary features
    • L.I. Kuncheva. On the optimality of naïve bayes with dependent binary features. Pattern Recognition Letters, 27:830-837, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 830-837
    • Kuncheva, L.I.1
  • 14
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • P. Melville and R. J. Mooney. Creating diversity in ensembles using artificial data. Information Fusion, 6(1):99-111, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 99-111
    • Melville, P.1    Mooney, R.J.2
  • 15
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • G. I. Webb. Multiboosting: A technique for combining boosting and wagging. Machine Learning, 40(2): 159-196, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.