-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36( 1-2): 105-139, 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
22944462678
-
Naive Bayes classifiers that perform well with continuous variables
-
17th Australina Conference on AI AI 04, Springer
-
R.R. Bouckaert. Naive Bayes classifiers that perform well with continuous variables. In 17th Australina Conference on AI (AI 04), Lecture Notes in AI. Springer, 2004.
-
(2004)
Lecture Notes in AI
-
-
Bouckaert, R.R.1
-
3
-
-
0003495934
-
Bagging predictors
-
Technical Report 421, Department of Statistics, University of California, Berkeley
-
L. Breiman. Bagging predictors. Technical Report 421, Department of Statistics, University of California, Berkeley, 1994.
-
(1994)
-
-
Breiman, L.1
-
4
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
29644438050
-
Statistical comparison of classifiers over multiple data sets
-
J. Demšar. Statistical comparison of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
8
-
-
0031269184
-
On the optimality of the simple bayesian classifier under zero-one loss
-
P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning, 29:103-130, 1997.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
9
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
13
-
-
33644870376
-
On the optimality of naïve bayes with dependent binary features
-
L.I. Kuncheva. On the optimality of naïve bayes with dependent binary features. Pattern Recognition Letters, 27:830-837, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, pp. 830-837
-
-
Kuncheva, L.I.1
-
14
-
-
10444259853
-
Creating diversity in ensembles using artificial data
-
P. Melville and R. J. Mooney. Creating diversity in ensembles using artificial data. Information Fusion, 6(1):99-111, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 99-111
-
-
Melville, P.1
Mooney, R.J.2
-
15
-
-
0034247206
-
Multiboosting: A technique for combining boosting and wagging
-
G. I. Webb. Multiboosting: A technique for combining boosting and wagging. Machine Learning, 40(2): 159-196, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
|