메뉴 건너뛰기




Volumn 5, Issue 2, 2012, Pages 231-253

A study on the use of multiobjective genetic algorithms for classifier selection in furia-based fuzzy multiclassifiers

Author keywords

Bagging; Diversity measures; Evolutionary multiobjective optimization; FURIA; Fuzzy rule based multiclassification systems; Genetic selection of individual classifiers; NSGA II

Indexed keywords

EVOLUTIONARY ALGORITHMS; FUZZY INFERENCE; FUZZY RULES; GENETIC ALGORITHMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MULTIOBJECTIVE OPTIMIZATION;

EID: 84865770445     PISSN: 18756891     EISSN: 18756883     Source Type: Journal    
DOI: 10.1080/18756891.2012.685272     Document Type: Article
Times cited : (22)

References (56)
  • 2
    • 33744922637 scopus 로고    scopus 로고
    • Boosted ARTMAP: Modifications to fuzzy ARTMAP motivated by boosting theory
    • Verzi, S.J., Heileman, G.L., and Georgiopoulos, M., 2006. Boosted ARTMAP:Modifications to fuzzy ARTMAP motivated by boosting theory. Neural Networks, 19 (4):446–468.
    • (2006) Neural Networks , vol.19 , Issue.4 , pp. 446-468
    • Verzi, S.J.1    Heileman, G.L.2    Georgiopoulos, M.3
  • 3
    • 33749521633 scopus 로고    scopus 로고
    • Boosting of granular models
    • Pedrycz, W., and Kwak, K.C., 2006. Boosting of granular models. Fuzzy Sets and Systems, 157 (22):2934–2953.
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.22 , pp. 2934-2953
    • Pedrycz, W.1    Kwak, K.C.2
  • 4
    • 27544438113 scopus 로고    scopus 로고
    • A new reliable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method
    • Takahashi, H., and Honda, H., 2005. A new reliable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method. Journal of Chemical Engineering of Japan, 38 (9):763–773.
    • (2005) Journal of Chemical Engineering of Japan , vol.38 , Issue.9 , pp. 763-773
    • Takahashi, H.1    Honda, H.2
  • 6
    • 70350559903 scopus 로고    scopus 로고
    • Genetic rule selection with a multi-classifier coding scheme for ensemble classifier design
    • Nojima, Y., and Ishibuchi, H., 2007. Genetic rule selection with a multi-classifier coding scheme for ensemble classifier design. International Journal of Hybrid Intelligent Systems, 4 (3):157–169.
    • (2007) International Journal of Hybrid Intelligent Systems , vol.4 , Issue.3 , pp. 157-169
    • Nojima, Y.1    Ishibuchi, H.2
  • 9
    • 50149111947 scopus 로고    scopus 로고
    • A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers
    • Witten-Bommerholz, Germany
    • O., Cordón, A., Quirin, and L., Sánchez. A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers. In Third International Workshop on Genetic and Evolving Fuzzy Systems (GEFS), pages 11–16, Witten-Bommerholz Germany, 2008.
    • (2008) Third International Workshop on Genetic and Evolving Fuzzy Systems (GEFS) , pp. 11-16
    • Cordón, O.1    Quirin, A.2    Sánchez, L.3
  • 10
    • 77952772388 scopus 로고    scopus 로고
    • Comparing two genetic overproduce-and-choose strategies for fuzzy rule-based multiclassification systems generated by bagging and mutual information-based feature selection
    • Cordón, O., and Quirin, A., 2010. Comparing two genetic overproduce-and-choose strategies for fuzzy rule-based multiclassification systems generated by bagging and mutual information-based feature selection. International Journal of Hybrid Intelligent Systems, 7 (1):45–64.
    • (2010) International Journal of Hybrid Intelligent Systems , vol.7 , Issue.1 , pp. 45-64
    • Cordón, O.1    Quirin, A.2
  • 11
    • 79960024043 scopus 로고    scopus 로고
    • Bi-criteria genetic selection of bagging fuzzy rule-based multiclassification systems
    • K., Trawiński, A., Quirin, and O., Cordón. Bi-criteria genetic selection of bagging fuzzy rule-based multiclassification systems. In IFSA/EUSFLAT Conf., pages 1514–1519, 2009.
    • (2009) IFSA/EUSFLAT Conf , pp. 1514-1519
    • Trawiński, K.1    Quirin, A.2    Cordón, O.3
  • 13
    • 0030585190 scopus 로고    scopus 로고
    • Engineering multi-version neural-net systems
    • Partridge, D., and Yates, W.B., 1996. Engineering multi-version neural-net systems. Neural Computation, 8 (4):869–893.
    • (1996) Neural Computation , vol.8 , Issue.4 , pp. 869-893
    • Partridge, D.1    Yates, W.B.2
  • 16
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems: Taxonomy, current research trends and prospects
    • January
    • Herrera F., Genetic fuzzy systems:taxonomy, current research trends and prospects Evolutionary Intelligence 1 1 27–46 January 2008
    • (2008) Evolutionary Intelligence , vol.1 , Issue.1 , pp. 27-46
    • Herrera, F.1
  • 17
    • 79960017575 scopus 로고    scopus 로고
    • On designing fuzzy multiclassifier systems by combining furia with bagging and feature selection, International Journal of Uncertainty
    • Trawiński, K., Cordón, O., and Quirin, A., 2011. On designing fuzzy multiclassifier systems by combining furia with bagging and feature selection, International Journal of Uncertainty. Fuzziness and Knowledge-Based Systems, 19 (4):589–633.
    • (2011) Fuzziness and Knowledge-Based Systems , vol.19 , Issue.4 , pp. 589-633
    • Trawiński, K.1    Cordón, O.2    Quirin, A.3
  • 21
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti, R., 1994. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5 (4):537–550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 25
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Ludmila, I. Kuncheva, and Christopher, J. Whitaker. 2003. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51 (2):181–207.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Ludmila, I.K.1    Christopher, J.W.2
  • 26
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta, D., and Gabrys, B., 2005. Classifier selection for majority voting. Information Fusion, 6 (1):63–81.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 27
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal, A., Pechenizkiy, M., and Cunningham, P., 2005. Diversity in search strategies for ensemble feature selection. Information Fusion, 6 (1):83–98.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 30
    • 45549107002 scopus 로고    scopus 로고
    • A dynamic overproduce-and-choose strategy for the selection of classifier ensembles
    • Dos Santos, E.M., Sabourin, R., and Maupin, P., 2008. A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognition, 41 (10):2993–3009.
    • (2008) Pattern Recognition , vol.41 , Issue.10 , pp. 2993-3009
    • Dos Santos, E.M.1    Sabourin, R.2    Maupin, P.3
  • 31
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T.G., 2000. An experimental comparison of three methods for constructing ensembles of decision trees:bagging, boosting, and randomization. Machine Learning, 40 (2):139–157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 34
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., 1996. Bagging predictors. Machine Learning, 24 (2):123–140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 35
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R., 1990. The strength of weak learnability. Machine Learning, 5 (2):197–227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 37
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their application to handwriting recognition
    • Xu, L., Krzyzak, A., and Suen, C.Y., 1992. Methods of combining multiple classifiers and their application to handwriting recognition. IEEE Transactions on Systems, Man and Cybernetics, 22 (3):418–435.
    • (1992) IEEE Transactions on Systems, Man and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 38
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., 2001. Random forests. Machine Learning, 451:5–32.
    • (2001) Machine Learning , vol.451 , pp. 5-32
    • Breiman, L.1
  • 40
    • 34548389246 scopus 로고    scopus 로고
    • Boosting fuzzy rules in classification problems under single-winner inference
    • Sánchez, L., and Otero, J., 2007. Boosting fuzzy rules in classification problems under single-winner inference. International Journal of Intelligent Systems, 229:1021–1034.
    • (2007) International Journal of Intelligent Systems , vol.229 , pp. 1021-1034
    • Sánchez, L.1    Otero, J.2
  • 41
    • 33746365419 scopus 로고    scopus 로고
    • Lymphoma prognostication from expression profiling using a combination method of boosting and projective adaptive resonance theory
    • Takahashi, H., and Honda, H., 2006. Lymphoma prognostication from expression profiling using a combination method of boosting and projective adaptive resonance theory. Journal of Chemical Engineering of Japan, 39 (7):767–771.
    • (2006) Journal of Chemical Engineering of Japan , vol.39 , Issue.7 , pp. 767-771
    • Takahashi, H.1    Honda, H.2
  • 43
    • 50249175159 scopus 로고    scopus 로고
    • Niching genetic feature selection algorithms applied to the design of fuzzy rule based classification systems
    • London, UK
    • J.J., Aguilera, M., Chica, M.J., del Jesus, and F., Herrera. Niching genetic feature selection algorithms applied to the design of fuzzy rule based classification systems. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1794–1799, London UK, 2007.
    • (2007) IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) , pp. 1794-1799
    • Aguilera, J.J.1    Chica, M.2    del Jesus, M.J.3    Herrera, F.4
  • 45
    • 50149088662 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers
    • Ishibuchi, H., and Nojima, Y., 2006. Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers. International Journal of Hybrid Intelligent Systems, 3 (3):129–145.
    • (2006) International Journal of Hybrid Intelligent Systems , vol.3 , Issue.3 , pp. 129-145
    • Ishibuchi, H.1    Nojima, Y.2
  • 47
    • 0018465664 scopus 로고
    • A composite classifier system design: Concepts and methodology
    • Dasarathy, B.V., and Sheela, B.V., 1979. A composite classifier system design:Concepts and methodology. Proceedings of IEEE, 67 (5):708–713.
    • (1979) Proceedings of IEEE , vol.67 , Issue.5 , pp. 708-713
    • Dasarathy, B.V.1    Sheela, B.V.2
  • 50
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • Ishibuchi, H., Nakashima, T., and Morisawa, T., 1999. Voting in fuzzy rule-based systems for pattern classification problems. Fuzzy Sets and Systems, 103 (2):223–238.
    • (1999) Fuzzy Sets and Systems , vol.103 , Issue.2 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2    Morisawa, T.3
  • 53
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
    • Zitzler, E., and Thiele, L., 1999. Multiobjective evolutionary algorithms:a comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, 3:257–271.
    • (1999) IEEE Transactions on Evolutionary Computation , vol.3 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2
  • 55
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical test for comparing supervised classification learning algorithms
    • Dietterich, T.G., 1998. Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation, 10 (7):1895–1923.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.