-
2
-
-
33744922637
-
Boosted ARTMAP: Modifications to fuzzy ARTMAP motivated by boosting theory
-
Verzi, S.J., Heileman, G.L., and Georgiopoulos, M., 2006. Boosted ARTMAP:Modifications to fuzzy ARTMAP motivated by boosting theory. Neural Networks, 19 (4):446–468.
-
(2006)
Neural Networks
, vol.19
, Issue.4
, pp. 446-468
-
-
Verzi, S.J.1
Heileman, G.L.2
Georgiopoulos, M.3
-
3
-
-
33749521633
-
Boosting of granular models
-
Pedrycz, W., and Kwak, K.C., 2006. Boosting of granular models. Fuzzy Sets and Systems, 157 (22):2934–2953.
-
(2006)
Fuzzy Sets and Systems
, vol.157
, Issue.22
, pp. 2934-2953
-
-
Pedrycz, W.1
Kwak, K.C.2
-
4
-
-
27544438113
-
A new reliable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method
-
Takahashi, H., and Honda, H., 2005. A new reliable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method. Journal of Chemical Engineering of Japan, 38 (9):763–773.
-
(2005)
Journal of Chemical Engineering of Japan
, vol.38
, Issue.9
, pp. 763-773
-
-
Takahashi, H.1
Honda, H.2
-
5
-
-
50249136472
-
Ensembles of fuzzy classifiers
-
UK: London
-
Canul-Reich, J., Shoemaker, L., and Hall, L.O., 2007. “ Ensembles of fuzzy classifiers ”. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–6. UK:London.
-
(2007)
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
, pp. 1-6
-
-
Canul-Reich, J.1
Shoemaker, L.2
Hall, L.O.3
-
6
-
-
70350559903
-
Genetic rule selection with a multi-classifier coding scheme for ensemble classifier design
-
Nojima, Y., and Ishibuchi, H., 2007. Genetic rule selection with a multi-classifier coding scheme for ensemble classifier design. International Journal of Hybrid Intelligent Systems, 4 (3):157–169.
-
(2007)
International Journal of Hybrid Intelligent Systems
, vol.4
, Issue.3
, pp. 157-169
-
-
Nojima, Y.1
Ishibuchi, H.2
-
8
-
-
77955453707
-
A fuzzy random forest
-
Bonissone, P. P., Cadenas, J. M., Garrido, M. C., and Díaz-Valladares, R. A., 2010. A fuzzy random forest. International Journal of Approximate Reasoning, 51 (7):729–747.
-
(2010)
International Journal of Approximate Reasoning
, vol.51
, Issue.7
, pp. 729-747
-
-
Bonissone, P.P.1
Cadenas, J.M.2
Garrido, M.C.3
Díaz-Valladares, R.A.4
-
9
-
-
50149111947
-
A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers
-
Witten-Bommerholz, Germany
-
O., Cordón, A., Quirin, and L., Sánchez. A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers. In Third International Workshop on Genetic and Evolving Fuzzy Systems (GEFS), pages 11–16, Witten-Bommerholz Germany, 2008.
-
(2008)
Third International Workshop on Genetic and Evolving Fuzzy Systems (GEFS)
, pp. 11-16
-
-
Cordón, O.1
Quirin, A.2
Sánchez, L.3
-
10
-
-
77952772388
-
Comparing two genetic overproduce-and-choose strategies for fuzzy rule-based multiclassification systems generated by bagging and mutual information-based feature selection
-
Cordón, O., and Quirin, A., 2010. Comparing two genetic overproduce-and-choose strategies for fuzzy rule-based multiclassification systems generated by bagging and mutual information-based feature selection. International Journal of Hybrid Intelligent Systems, 7 (1):45–64.
-
(2010)
International Journal of Hybrid Intelligent Systems
, vol.7
, Issue.1
, pp. 45-64
-
-
Cordón, O.1
Quirin, A.2
-
11
-
-
79960024043
-
Bi-criteria genetic selection of bagging fuzzy rule-based multiclassification systems
-
K., Trawiński, A., Quirin, and O., Cordón. Bi-criteria genetic selection of bagging fuzzy rule-based multiclassification systems. In IFSA/EUSFLAT Conf., pages 1514–1519, 2009.
-
(2009)
IFSA/EUSFLAT Conf
, pp. 1514-1519
-
-
Trawiński, K.1
Quirin, A.2
Cordón, O.3
-
13
-
-
0030585190
-
Engineering multi-version neural-net systems
-
Partridge, D., and Yates, W.B., 1996. Engineering multi-version neural-net systems. Neural Computation, 8 (4):869–893.
-
(1996)
Neural Computation
, vol.8
, Issue.4
, pp. 869-893
-
-
Partridge, D.1
Yates, W.B.2
-
14
-
-
0003927095
-
-
World Scientific
-
Cordón, O., Herrera, F., Hoffmann, F., and Magdalena, L., 2001. Genetic Fuzzy Systems. Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, World Scientific.
-
(2001)
Genetic Fuzzy Systems. Evolutionary Tuning and Learning of Fuzzy Knowledge Bases
-
-
Cordón, O.1
Herrera, F.2
Hoffmann, F.3
Magdalena, L.4
-
15
-
-
0346781553
-
Ten years of genetic fuzzy systems: Current framework and new trends
-
Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., and Magdalena, L., 2004. Ten years of genetic fuzzy systems:Current framework and new trends. Fuzzy Sets and Systems, 141 (1):5–31.
-
(2004)
Fuzzy Sets and Systems
, vol.141
, Issue.1
, pp. 5-31
-
-
Cordón, O.1
Gomide, F.2
Herrera, F.3
Hoffmann, F.4
Magdalena, L.5
-
16
-
-
50149096917
-
Genetic fuzzy systems: Taxonomy, current research trends and prospects
-
January
-
Herrera F., Genetic fuzzy systems:taxonomy, current research trends and prospects Evolutionary Intelligence 1 1 27–46 January 2008
-
(2008)
Evolutionary Intelligence
, vol.1
, Issue.1
, pp. 27-46
-
-
Herrera, F.1
-
17
-
-
79960017575
-
On designing fuzzy multiclassifier systems by combining furia with bagging and feature selection, International Journal of Uncertainty
-
Trawiński, K., Cordón, O., and Quirin, A., 2011. On designing fuzzy multiclassifier systems by combining furia with bagging and feature selection, International Journal of Uncertainty. Fuzziness and Knowledge-Based Systems, 19 (4):589–633.
-
(2011)
Fuzziness and Knowledge-Based Systems
, vol.19
, Issue.4
, pp. 589-633
-
-
Trawiński, K.1
Cordón, O.2
Quirin, A.3
-
18
-
-
70349591070
-
-
Hühn, J. C., and Hüllermeier, E., 2009. FURIA:an algorithm for unordered fuzzy rule induction. Data Mining and Knowledge Discovery, 19 (3):293–319.
-
(2009)
FURIA: An algorithm for unordered fuzzy rule induction. Data Mining and Knowledge Discovery
, vol.19
, Issue.3
, pp. 293-319
-
-
Hühn, J.C.1
Hüllermeier, E.2
-
21
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
Battiti, R., 1994. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5 (4):537–550.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.4
, pp. 537-550
-
-
Battiti, R.1
-
23
-
-
23944451642
-
-
Secaucus, NJ, USA: Springer-Verlag New York, Inc
-
Ishibuchi, H., Nakashima, T., and Nii, M., 2004. Classification and Modeling with Linguistic Information Granules:Advanced Approaches to Linguistic Data Mining (Advanced Information Processing), Secaucus, NJ, USA:Springer-Verlag New York, Inc.
-
(2004)
Classification and Modeling with Linguistic Information Granules: Advanced Approaches to Linguistic Data Mining (Advanced Information Processing)
-
-
Ishibuchi, H.1
Nakashima, T.2
Nii, M.3
-
24
-
-
47249109476
-
-
2nd Edition, Springer
-
Coello, C.A., Lamont, G.B., and Van Veldhuizen, D.A., 2007. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd Edition, Springer.
-
(2007)
Evolutionary Algorithms for Solving Multi-Objective Problems
-
-
Coello, C.A.1
Lamont, G.B.2
Van Veldhuizen, D.A.3
-
25
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Ludmila, I. Kuncheva, and Christopher, J. Whitaker. 2003. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51 (2):181–207.
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Ludmila, I.K.1
Christopher, J.W.2
-
26
-
-
10444224737
-
Classifier selection for majority voting
-
Ruta, D., and Gabrys, B., 2005. Classifier selection for majority voting. Information Fusion, 6 (1):63–81.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 63-81
-
-
Ruta, D.1
Gabrys, B.2
-
27
-
-
10444238133
-
Diversity in search strategies for ensemble feature selection
-
Tsymbal, A., Pechenizkiy, M., and Cunningham, P., 2005. Diversity in search strategies for ensemble feature selection. Information Fusion, 6 (1):83–98.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 83-98
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
28
-
-
0036530772
-
A fast and elitist multiobjective genetic algorithm: NSGA-II
-
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 6:182–197.
-
(2002)
IEEE Transactions on Evolutionary Computation
, vol.6
, pp. 182-197
-
-
Deb, K.1
Pratap, A.2
Agarwal, S.3
Meyarivan, T.4
-
29
-
-
40649122292
-
Single and multi-objective genetic algorithms for the selection of ensemble of classifiers
-
Vancouver
-
E.M., Dos Santos, R., Sabourin, P., Maupin. Single and multi-objective genetic algorithms for the selection of ensemble of classifiers. In International Joint Conference on Neural Networks (IJCNN), pages 3070–3077, Vancouver, 2006.
-
(2006)
International Joint Conference on Neural Networks (IJCNN)
, pp. 3070-3077
-
-
Dos Santos, E.M.1
Sabourin, R.2
Maupin, P.3
-
30
-
-
45549107002
-
A dynamic overproduce-and-choose strategy for the selection of classifier ensembles
-
Dos Santos, E.M., Sabourin, R., and Maupin, P., 2008. A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognition, 41 (10):2993–3009.
-
(2008)
Pattern Recognition
, vol.41
, Issue.10
, pp. 2993-3009
-
-
Dos Santos, E.M.1
Sabourin, R.2
Maupin, P.3
-
31
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T.G., 2000. An experimental comparison of three methods for constructing ensembles of decision trees:bagging, boosting, and randomization. Machine Learning, 40 (2):139–157.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
32
-
-
33947231519
-
A comparison of decision tree ensemble creation techniques
-
R.E. Banfield, L.O. Hall, K.W. Bowyer, W.P., Kegelmeyer. A comparison of decision tree ensemble creation techniques, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 1:173–180, 2007.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 173-180
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
34
-
-
0030211964
-
Bagging predictors
-
Breiman, L., 1996. Bagging predictors. Machine Learning, 24 (2):123–140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
35
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R., 1990. The strength of weak learnability. Machine Learning, 5 (2):197–227.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.1
-
36
-
-
24644441048
-
Ensembling local learners through multimodal perturbation
-
Zhou, Z.H., 2005. Ensembling local learners through multimodal perturbation. IEEE Transactions of Systems, Man, and Cybernetics Part B:Cybernetics, 354:725–735.
-
(2005)
IEEE Transactions of Systems, Man, and Cybernetics Part B: Cybernetics
, vol.354
, pp. 725-735
-
-
Zhou, Z.H.1
-
37
-
-
0026860706
-
Methods of combining multiple classifiers and their application to handwriting recognition
-
Xu, L., Krzyzak, A., and Suen, C.Y., 1992. Methods of combining multiple classifiers and their application to handwriting recognition. IEEE Transactions on Systems, Man and Cybernetics, 22 (3):418–435.
-
(1992)
IEEE Transactions on Systems, Man and Cybernetics
, vol.22
, Issue.3
, pp. 418-435
-
-
Xu, L.1
Krzyzak, A.2
Suen, C.Y.3
-
38
-
-
0035478854
-
Random forests
-
Breiman, L., 2001. Random forests. Machine Learning, 451:5–32.
-
(2001)
Machine Learning
, vol.451
, pp. 5-32
-
-
Breiman, L.1
-
39
-
-
3042555856
-
Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms
-
del Jesus, M.J., Hoffmann, F., Navascues, L.J., and Sánchez, L., 2004. Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms. IEEE Transactions on Fuzzy Systems, 12 (3):296–308.
-
(2004)
IEEE Transactions on Fuzzy Systems
, vol.12
, Issue.3
, pp. 296-308
-
-
del Jesus, M.J.1
Hoffmann, F.2
Navascues, L.J.3
Sánchez, L.4
-
40
-
-
34548389246
-
Boosting fuzzy rules in classification problems under single-winner inference
-
Sánchez, L., and Otero, J., 2007. Boosting fuzzy rules in classification problems under single-winner inference. International Journal of Intelligent Systems, 229:1021–1034.
-
(2007)
International Journal of Intelligent Systems
, vol.229
, pp. 1021-1034
-
-
Sánchez, L.1
Otero, J.2
-
41
-
-
33746365419
-
Lymphoma prognostication from expression profiling using a combination method of boosting and projective adaptive resonance theory
-
Takahashi, H., and Honda, H., 2006. Lymphoma prognostication from expression profiling using a combination method of boosting and projective adaptive resonance theory. Journal of Chemical Engineering of Japan, 39 (7):767–771.
-
(2006)
Journal of Chemical Engineering of Japan
, vol.39
, Issue.7
, pp. 767-771
-
-
Takahashi, H.1
Honda, H.2
-
42
-
-
0031996838
-
Fuzzy decision trees: Issues and methods
-
Janikow, C. Z., 1998. Fuzzy decision trees:issues and methods. IEEE Transactions on Systems, Man, and Cybernetics Part B, 28 (1):1–14.
-
(1998)
IEEE Transactions on Systems, Man, and Cybernetics Part B
, vol.28
, Issue.1
, pp. 1-14
-
-
Janikow, C.Z.1
-
43
-
-
50249175159
-
Niching genetic feature selection algorithms applied to the design of fuzzy rule based classification systems
-
London, UK
-
J.J., Aguilera, M., Chica, M.J., del Jesus, and F., Herrera. Niching genetic feature selection algorithms applied to the design of fuzzy rule based classification systems. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1794–1799, London UK, 2007.
-
(2007)
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
, pp. 1794-1799
-
-
Aguilera, J.J.1
Chica, M.2
del Jesus, M.J.3
Herrera, F.4
-
45
-
-
50149088662
-
Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers
-
Ishibuchi, H., and Nojima, Y., 2006. Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers. International Journal of Hybrid Intelligent Systems, 3 (3):129–145.
-
(2006)
International Journal of Hybrid Intelligent Systems
, vol.3
, Issue.3
, pp. 129-145
-
-
Ishibuchi, H.1
Nojima, Y.2
-
46
-
-
0002595663
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Nashville, USA
-
R., Schapire, Y., Freund, P., Bartlett, W., Lee. Boosting the margin:A new explanation for the effectiveness of voting methods. In International Conference on Machine Learning, pages 322–330, Nashville USA, 1997.
-
International Conference on Machine Learning
, pp. 322-330
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
47
-
-
0018465664
-
A composite classifier system design: Concepts and methodology
-
Dasarathy, B.V., and Sheela, B.V., 1979. A composite classifier system design:Concepts and methodology. Proceedings of IEEE, 67 (5):708–713.
-
(1979)
Proceedings of IEEE
, vol.67
, Issue.5
, pp. 708-713
-
-
Dasarathy, B.V.1
Sheela, B.V.2
-
48
-
-
24344486891
-
Multi-objective genetic algorithms to create ensemble of classifiers
-
Oliveira, L.S., Morita, M., Sabourin, R., and Bortolozzi, F., 2005. Multi-objective genetic algorithms to create ensemble of classifiers. Lecture Notes in Computer Science, 3410:592–606.
-
(2005)
Lecture Notes in Computer Science
, vol.3410
, pp. 592-606
-
-
Oliveira, L.S.1
Morita, M.2
Sabourin, R.3
Bortolozzi, F.4
-
50
-
-
0000719509
-
Voting in fuzzy rule-based systems for pattern classification problems
-
Ishibuchi, H., Nakashima, T., and Morisawa, T., 1999. Voting in fuzzy rule-based systems for pattern classification problems. Fuzzy Sets and Systems, 103 (2):223–238.
-
(1999)
Fuzzy Sets and Systems
, vol.103
, Issue.2
, pp. 223-238
-
-
Ishibuchi, H.1
Nakashima, T.2
Morisawa, T.3
-
51
-
-
0032655554
-
A proposal on reasoning methods in fuzzy rule-based classification systems
-
Cordón, O., del Jesus, M.J., and Herrera, F., 1999. A proposal on reasoning methods in fuzzy rule-based classification systems. International Journal of Approximate Reasoning, 20:21–45.
-
(1999)
International Journal of Approximate Reasoning
, vol.20
, pp. 21-45
-
-
Cordón, O.1
del Jesus, M.J.2
Herrera, F.3
-
52
-
-
38049036817
-
Combining bagging and random subspaces to create better ensembles
-
Berlin, Heidelberg, Springer-Verlag
-
P., Panov, S., Džeroski. Combining bagging and random subspaces to create better ensembles. In IDA'07:Proceedings of the 7th international conference on Intelligent data analysis, pages 118–129, Berlin Heidelberg, 2007. Springer-Verlag.
-
(2007)
IDA'07: Proceedings of the 7th international conference on Intelligent data analysis
, pp. 118-129
-
-
Panov, P.1
Džeroski, S.2
-
53
-
-
0033318858
-
Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
-
Zitzler, E., and Thiele, L., 1999. Multiobjective evolutionary algorithms:a comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, 3:257–271.
-
(1999)
IEEE Transactions on Evolutionary Computation
, vol.3
, pp. 257-271
-
-
Zitzler, E.1
Thiele, L.2
-
55
-
-
0000259511
-
Approximate statistical test for comparing supervised classification learning algorithms
-
Dietterich, T.G., 1998. Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation, 10 (7):1895–1923.
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
|