메뉴 건너뛰기




Volumn 141, Issue , 2014, Pages 236-245

A methodology for training set instance selection using mutual information in time series prediction

Author keywords

Instance selection; Mutual information; Time series prediction

Indexed keywords

ARTIFICIAL INTELLIGENCE; TIME SERIES;

EID: 84901603905     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.03.006     Document Type: Article
Times cited : (46)

References (57)
  • 1
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim K. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55:307-319.
    • (2003) Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.1
  • 2
    • 58049099887 scopus 로고    scopus 로고
    • Support vector regression for link load prediction
    • Bermolen P., Rossi D. Support vector regression for link load prediction. Comput. Netw. 2009, 53:191-201.
    • (2009) Comput. Netw. , vol.53 , pp. 191-201
    • Bermolen, P.1    Rossi, D.2
  • 3
    • 0035425552 scopus 로고    scopus 로고
    • Short-term hourly load forecasting using time-series modeling with peak load estimation capability
    • Amjady N. Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans. Power Syst. 2001, 16:798-805.
    • (2001) IEEE Trans. Power Syst. , vol.16 , pp. 798-805
    • Amjady, N.1
  • 4
    • 0025519319 scopus 로고
    • A regression-based approach to short-term system load forecasting
    • Papalexopoulos A.D., Hesterberg T.C. A regression-based approach to short-term system load forecasting. IEEE Trans. Power Syst. 1990, 5:1535-1547.
    • (1990) IEEE Trans. Power Syst. , vol.5 , pp. 1535-1547
    • Papalexopoulos, A.D.1    Hesterberg, T.C.2
  • 6
    • 0742324096 scopus 로고    scopus 로고
    • Forecasting seasonals and trends by exponentially weighted moving averages
    • Holt C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20:5-10.
    • (2004) Int. J. Forecast. , vol.20 , pp. 5-10
    • Holt, C.C.1
  • 7
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14:35-62.
    • (1998) Int. J. Forecast. , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 8
    • 66449136989 scopus 로고    scopus 로고
    • Time series prediction using support vector machines: a survey
    • Sapankevych N.I., Sankar R. Time series prediction using support vector machines: a survey. IEEE Comput. Intell. Mag. 2009, 4:24-38.
    • (2009) IEEE Comput. Intell. Mag. , vol.4 , pp. 24-38
    • Sapankevych, N.I.1    Sankar, R.2
  • 9
    • 2342458952 scopus 로고    scopus 로고
    • Multiple neural networks for a long term time series forecast
    • Nguyen H.H., Chan C.W. Multiple neural networks for a long term time series forecast. Neural Comput. Appl. 2004, 13:90-98.
    • (2004) Neural Comput. Appl. , vol.13 , pp. 90-98
    • Nguyen, H.H.1    Chan, C.W.2
  • 10
    • 84901599577 scopus 로고    scopus 로고
    • Forecasting high-frequency time series with neural networks-an analysis of modelling challenges from increasing data frequency
    • Kourentzes N., Crone S.F. Forecasting high-frequency time series with neural networks-an analysis of modelling challenges from increasing data frequency. Int. Conf. Data Min. 2008.
    • (2008) Int. Conf. Data Min.
    • Kourentzes, N.1    Crone, S.F.2
  • 11
    • 70449434126 scopus 로고    scopus 로고
    • Input-variable specification for neural networks-an analysis of forecasting low and high time series frequency, in: Proceedings of International Joint Conference on Neural Networks
    • S.F. Crone, N. Kourentzes, Input-variable specification for neural networks-an analysis of forecasting low and high time series frequency, in: Proceedings of International Joint Conference on Neural Networks, 2009, pp. 619-626.
    • (2009) , pp. 619-626
    • Crone, S.F.1    Kourentzes, N.2
  • 12
    • 0031069120 scopus 로고    scopus 로고
    • Intelligent selection of instances for prediction functions in lazy learning algorithms
    • Zhang J., Yim Y., Yang J. Intelligent selection of instances for prediction functions in lazy learning algorithms. Artif. Intell. Rev. 1997, 11:175-191.
    • (1997) Artif. Intell. Rev. , vol.11 , pp. 175-191
    • Zhang, J.1    Yim, Y.2    Yang, J.3
  • 13
    • 24944499329 scopus 로고    scopus 로고
    • Genetic algorithms for outlier detection and variable selection in linear regression models
    • Tolvi J. Genetic algorithms for outlier detection and variable selection in linear regression models. Soft Comput. 2004, 8:527-533.
    • (2004) Soft Comput. , vol.8 , pp. 527-533
    • Tolvi, J.1
  • 14
    • 77952551790 scopus 로고    scopus 로고
    • New method for instance or prototype selection using mutual information in time series prediction
    • Guillen A., Herrera L.J., Rubio G., Pomares H., Lendasse A., Rojas I. New method for instance or prototype selection using mutual information in time series prediction. Neurocomputing 2010, 73:2030-2038.
    • (2010) Neurocomputing , vol.73 , pp. 2030-2038
    • Guillen, A.1    Herrera, L.J.2    Rubio, G.3    Pomares, H.4    Lendasse, A.5    Rojas, I.6
  • 19
    • 0034592915 scopus 로고    scopus 로고
    • Active learning using adaptive resampling, in: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • V.S. Iyengar, C. Apte, T. Zhang, Active learning using adaptive resampling, in: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000 pp. 91-98.
    • (2000) , pp. 91-98
    • Iyengar, V.S.1    Apte, C.2    Zhang, T.3
  • 20
    • 48849089269 scopus 로고    scopus 로고
    • Adaptive machine learning in delayed feedback domains by selective relearning
    • Ludl M.C., Lewandowski A. Adaptive machine learning in delayed feedback domains by selective relearning. Appl. Artif. Intell. 2008, 22:543-557.
    • (2008) Appl. Artif. Intell. , vol.22 , pp. 543-557
    • Ludl, M.C.1    Lewandowski, A.2
  • 21
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • Shimodaira H. Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plann. Inference 2000, 90:227-244.
    • (2000) J. Stat. Plann. Inference , vol.90 , pp. 227-244
    • Shimodaira, H.1
  • 22
    • 0000217085 scopus 로고
    • Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
    • Aha D.W. Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. Int. J. Man-Mach. Stud. 1992, 36:267-287.
    • (1992) Int. J. Man-Mach. Stud. , vol.36 , pp. 267-287
    • Aha, D.W.1
  • 23
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance based learning algorithms
    • Wilson D.R., Martinez T. Reduction techniques for instance based learning algorithms. Mach. Learn. 2000, 38:257-286.
    • (2000) Mach. Learn. , vol.38 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.2
  • 25
    • 0035792033 scopus 로고    scopus 로고
    • Learning of neural networks with GA-based instance selection, in: Proceedings of the IFSA World Congress and 20th NAFIPS International Conference 4
    • H. Ishibuchi, T. Nakashima, M. Nii, Learning of neural networks with GA-based instance selection, in: Proceedings of the IFSA World Congress and 20th NAFIPS International Conference 4, 2001 pp. 2102-2107.
    • (2001) , pp. 2102-2107
    • Ishibuchi, H.1    Nakashima, T.2    Nii, M.3
  • 26
    • 0141830857 scopus 로고    scopus 로고
    • Stopping criterion for boosting-based data reduction techniques: from binary to multiclass problems
    • Sebban M., Nock R., Lallich S. Stopping criterion for boosting-based data reduction techniques: from binary to multiclass problems. J. Mach. Learn. Res. 2002, 3:863-865.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 863-865
    • Sebban, M.1    Nock, R.2    Lallich, S.3
  • 27
    • 84901601563 scopus 로고    scopus 로고
    • Pruning improves heuristic search for cost-sensitive learning, in: Proceedings of the International Conference on Machine Learning
    • V.B. Zubek, T.G. Dietterich, Pruning improves heuristic search for cost-sensitive learning, in: Proceedings of the International Conference on Machine Learning, 2002, pp. 27-34.
    • (2002) , pp. 27-34
    • Zubek, V.B.1    Dietterich, T.G.2
  • 28
    • 85132303221 scopus 로고    scopus 로고
    • Feature weighting and instance selection for collaborative filtering: an information-theoretic approach
    • Yu1 K., Xu1 X., Ester M., Kriegel H.P. Feature weighting and instance selection for collaborative filtering: an information-theoretic approach. Knowl. Inf. Syst. 2003, 5:201-224.
    • (2003) Knowl. Inf. Syst. , vol.5 , pp. 201-224
    • Yu1, K.1    Xu1, X.2    Ester, M.3    Kriegel, H.P.4
  • 30
    • 9444236865 scopus 로고    scopus 로고
    • Comparison of instances seletion algorithms I, in: Proceedings of the Artificial Intelligence and Soft Computing-ICAISC 2004
    • N. Jankowski, M. Grochowski, Comparison of instances seletion algorithms I, in: Proceedings of the Artificial Intelligence and Soft Computing-ICAISC 2004, 2004, pp. 598-603.
    • (2004) , pp. 598-603
    • Jankowski, N.1    Grochowski, M.2
  • 31
    • 0031069120 scopus 로고    scopus 로고
    • Intelligent selection of instances for prediction functions in lazy learning algorithms
    • Zhang J., Yim Y.S., Yang J. Intelligent selection of instances for prediction functions in lazy learning algorithms. Artif. Intell. Rev. 1997, 11:175-191.
    • (1997) Artif. Intell. Rev. , vol.11 , pp. 175-191
    • Zhang, J.1    Yim, Y.S.2    Yang, J.3
  • 32
    • 77957995908 scopus 로고    scopus 로고
    • k-NN based LS-SVM framework for long-term time series prediction, in: Proceedings of the 2010 IEEE International Conference on Information Reuse and Integration
    • Z. Huang, M.L. Shyu, k-NN based LS-SVM framework for long-term time series prediction, in: Proceedings of the 2010 IEEE International Conference on Information Reuse and Integration, 2010, pp. 69-74.
    • (2010) , pp. 69-74
    • Huang, Z.1    Shyu, M.L.2
  • 33
    • 84868316661 scopus 로고    scopus 로고
    • Long-term time series prediction using k-NN based LS-SVM framework with multi-value integration
    • Springer
    • Shyu M.L., Huang Z. Long-term time series prediction using k-NN based LS-SVM framework with multi-value integration. Recent Trends in Information Reuse and Integration 2012, 191-209. Springer.
    • (2012) Recent Trends in Information Reuse and Integration , pp. 191-209
    • Shyu, M.L.1    Huang, Z.2
  • 34
    • 84901591047 scopus 로고    scopus 로고
    • Instance or prototype selection for function approximation using mutual information, in: Proceedings of the European Symposium on Time Series Prediction-ESTSP 2008
    • A. Guillén, L. Herrera, G. Rubio, Instance or prototype selection for function approximation using mutual information, in: Proceedings of the European Symposium on Time Series Prediction-ESTSP 2008, 2008, pp. 67-75.
    • (2008) , pp. 67-75
    • Guillén, A.1    Herrera, L.2    Rubio, G.3
  • 35
    • 84860136371 scopus 로고    scopus 로고
    • Adaptive least squares support vector machines method for short-term load forecasting based on mutual information for inputs selection
    • Stojanović M., Božić M., Stanković M., Stajić Z. Adaptive least squares support vector machines method for short-term load forecasting based on mutual information for inputs selection. Int. Rev. Electr. Eng. 2012, 7:3574-3585.
    • (2012) Int. Rev. Electr. Eng. , vol.7 , pp. 3574-3585
    • Stojanović, M.1    Božić, M.2    Stanković, M.3    Stajić, Z.4
  • 38
    • 32944462016 scopus 로고    scopus 로고
    • Mutual information for the selection of relevant variables in spectrometric nonlinear modeling
    • Rossi F., Lendasse A., Francois D., Wertz V., Verleysen M. Mutual information for the selection of relevant variables in spectrometric nonlinear modeling. Chemom. Intell. Lab. Syst. 2006, 80:215-226.
    • (2006) Chemom. Intell. Lab. Syst. , vol.80 , pp. 215-226
    • Rossi, F.1    Lendasse, A.2    Francois, D.3    Wertz, V.4    Verleysen, M.5
  • 39
    • 33749828721 scopus 로고    scopus 로고
    • Effective input variable selection for function approximation, in: Proceedings of the International Conference on Artificial Neural Networks-ICANN 2006
    • L.J. Herrera, H. Pomares, I. Rojas, M. Verleysen, A. Guillen, Effective input variable selection for function approximation, in: Proceedings of the International Conference on Artificial Neural Networks-ICANN 2006, 2006, pp. 41-50.
    • (2006) , pp. 41-50
    • Herrera, L.J.1    Pomares, H.2    Rojas, I.3    Verleysen, M.4    Guillen, A.5
  • 40
    • 84860237900 scopus 로고    scopus 로고
    • Feature selection with missing data using mutual information estimators
    • Doquire G., Verleysen M. Feature selection with missing data using mutual information estimators. Neurocomputing 2012, 90:3-11.
    • (2012) Neurocomputing , vol.90 , pp. 3-11
    • Doquire, G.1    Verleysen, M.2
  • 41
    • 0024621174 scopus 로고
    • On estimation of entropy and mutual information of the continuous distributions
    • Moddemeijer R. On estimation of entropy and mutual information of the continuous distributions. Signal Process. 1989, 16:233-248.
    • (1989) Signal Process. , vol.16 , pp. 233-248
    • Moddemeijer, R.1
  • 42
    • 0001259448 scopus 로고
    • Estimation of mutual information using kernel density estimators
    • Moon Y., Rajagopalan B., Lall U. Estimation of mutual information using kernel density estimators. Phys. Rev. E 1995, 52:2318-2321.
    • (1995) Phys. Rev. E , vol.52 , pp. 2318-2321
    • Moon, Y.1    Rajagopalan, B.2    Lall, U.3
  • 44
    • 84901630522 scopus 로고    scopus 로고
    • http://www.klab.caltech.edu/~kraskov/MILCA/.
  • 46
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • François D., Rossi F., Wertz V., Verleysen M. Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 2007, 70:1276-1288.
    • (2007) Neurocomputing , vol.70 , pp. 1276-1288
    • François, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 49
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • Arlot S., Celisse A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4:40-79.
    • (2010) Stat. Surv. , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 50
    • 84901599578 scopus 로고    scopus 로고
    • http://www.neural-forecasting-competition.com/NN5/datasets.htm.
  • 51
    • 84857642411 scopus 로고    scopus 로고
    • Review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
    • Taieb S.B., Bontempi G., Atiya A., Sorjamaa A. review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 2012, 39:7067-7083.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 7067-7083
    • Taieb, S.B.1    Bontempi, G.2    Atiya, A.3    Sorjamaa, A.4
  • 52
    • 0034288853 scopus 로고    scopus 로고
    • Out-of-sample tests of forecasting accuracy: an analysis and review
    • Tashman L.J. Out-of-sample tests of forecasting accuracy: an analysis and review. Int. J. Forecast. 2000, 16:437-450.
    • (2000) Int. J. Forecast. , vol.16 , pp. 437-450
    • Tashman, L.J.1
  • 53
    • 77952552084 scopus 로고    scopus 로고
    • Feature selection for time series prediction-a combined filter and wrapper approach for neural networks
    • Crone S.F., Kourentzes N. Feature selection for time series prediction-a combined filter and wrapper approach for neural networks. Neurocomputing 2010, 73:1923-1936.
    • (2010) Neurocomputing , vol.73 , pp. 1923-1936
    • Crone, S.F.1    Kourentzes, N.2
  • 54
    • 84901614867 scopus 로고    scopus 로고
    • http://www.esat.kuleuven.be/sista/lssvmlab/.
  • 55
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Dešmar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Dešmar, J.1
  • 56
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • Garcia S., Herrera F. An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9:2677-2694.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 57
    • 84901599575 scopus 로고    scopus 로고
    • http://www.neural-forecasting-competition.com/NN5/results.htm.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.