-
1
-
-
0242351905
-
Financial time series forecasting using support vector machines
-
Kim K. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55:307-319.
-
(2003)
Neurocomputing
, vol.55
, pp. 307-319
-
-
Kim, K.1
-
2
-
-
58049099887
-
Support vector regression for link load prediction
-
Bermolen P., Rossi D. Support vector regression for link load prediction. Comput. Netw. 2009, 53:191-201.
-
(2009)
Comput. Netw.
, vol.53
, pp. 191-201
-
-
Bermolen, P.1
Rossi, D.2
-
3
-
-
0035425552
-
Short-term hourly load forecasting using time-series modeling with peak load estimation capability
-
Amjady N. Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans. Power Syst. 2001, 16:798-805.
-
(2001)
IEEE Trans. Power Syst.
, vol.16
, pp. 798-805
-
-
Amjady, N.1
-
4
-
-
0025519319
-
A regression-based approach to short-term system load forecasting
-
Papalexopoulos A.D., Hesterberg T.C. A regression-based approach to short-term system load forecasting. IEEE Trans. Power Syst. 1990, 5:1535-1547.
-
(1990)
IEEE Trans. Power Syst.
, vol.5
, pp. 1535-1547
-
-
Papalexopoulos, A.D.1
Hesterberg, T.C.2
-
6
-
-
0742324096
-
Forecasting seasonals and trends by exponentially weighted moving averages
-
Holt C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20:5-10.
-
(2004)
Int. J. Forecast.
, vol.20
, pp. 5-10
-
-
Holt, C.C.1
-
7
-
-
0003123930
-
Forecasting with artificial neural networks: The state of the art
-
Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14:35-62.
-
(1998)
Int. J. Forecast.
, vol.14
, pp. 35-62
-
-
Zhang, G.1
Patuwo, B.E.2
Hu, M.Y.3
-
8
-
-
66449136989
-
Time series prediction using support vector machines: a survey
-
Sapankevych N.I., Sankar R. Time series prediction using support vector machines: a survey. IEEE Comput. Intell. Mag. 2009, 4:24-38.
-
(2009)
IEEE Comput. Intell. Mag.
, vol.4
, pp. 24-38
-
-
Sapankevych, N.I.1
Sankar, R.2
-
9
-
-
2342458952
-
Multiple neural networks for a long term time series forecast
-
Nguyen H.H., Chan C.W. Multiple neural networks for a long term time series forecast. Neural Comput. Appl. 2004, 13:90-98.
-
(2004)
Neural Comput. Appl.
, vol.13
, pp. 90-98
-
-
Nguyen, H.H.1
Chan, C.W.2
-
10
-
-
84901599577
-
Forecasting high-frequency time series with neural networks-an analysis of modelling challenges from increasing data frequency
-
Kourentzes N., Crone S.F. Forecasting high-frequency time series with neural networks-an analysis of modelling challenges from increasing data frequency. Int. Conf. Data Min. 2008.
-
(2008)
Int. Conf. Data Min.
-
-
Kourentzes, N.1
Crone, S.F.2
-
11
-
-
70449434126
-
-
Input-variable specification for neural networks-an analysis of forecasting low and high time series frequency, in: Proceedings of International Joint Conference on Neural Networks
-
S.F. Crone, N. Kourentzes, Input-variable specification for neural networks-an analysis of forecasting low and high time series frequency, in: Proceedings of International Joint Conference on Neural Networks, 2009, pp. 619-626.
-
(2009)
, pp. 619-626
-
-
Crone, S.F.1
Kourentzes, N.2
-
12
-
-
0031069120
-
Intelligent selection of instances for prediction functions in lazy learning algorithms
-
Zhang J., Yim Y., Yang J. Intelligent selection of instances for prediction functions in lazy learning algorithms. Artif. Intell. Rev. 1997, 11:175-191.
-
(1997)
Artif. Intell. Rev.
, vol.11
, pp. 175-191
-
-
Zhang, J.1
Yim, Y.2
Yang, J.3
-
13
-
-
24944499329
-
Genetic algorithms for outlier detection and variable selection in linear regression models
-
Tolvi J. Genetic algorithms for outlier detection and variable selection in linear regression models. Soft Comput. 2004, 8:527-533.
-
(2004)
Soft Comput.
, vol.8
, pp. 527-533
-
-
Tolvi, J.1
-
14
-
-
77952551790
-
New method for instance or prototype selection using mutual information in time series prediction
-
Guillen A., Herrera L.J., Rubio G., Pomares H., Lendasse A., Rojas I. New method for instance or prototype selection using mutual information in time series prediction. Neurocomputing 2010, 73:2030-2038.
-
(2010)
Neurocomputing
, vol.73
, pp. 2030-2038
-
-
Guillen, A.1
Herrera, L.J.2
Rubio, G.3
Pomares, H.4
Lendasse, A.5
Rojas, I.6
-
15
-
-
67149129014
-
-
The MIT Press, Cambridge, MA
-
Candela J.Q., Sugiyama M., Schwaighofer A., Lawrence N.D. Dataset Shift in Machine Learning 2009, The MIT Press, Cambridge, MA.
-
(2009)
Dataset Shift in Machine Learning
-
-
Candela, J.Q.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.D.4
-
17
-
-
80052714543
-
A unifying view on dataset shift in classification
-
Torres J.G.M., Raeder T., Rodriguez R.A., Chawla N.V., Herrera F. A unifying view on dataset shift in classification. Pattern Recogn. 2012, 45:521-530.
-
(2012)
Pattern Recogn.
, vol.45
, pp. 521-530
-
-
Torres, J.G.M.1
Raeder, T.2
Rodriguez, R.A.3
Chawla, N.V.4
Herrera, F.5
-
19
-
-
0034592915
-
-
Active learning using adaptive resampling, in: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
V.S. Iyengar, C. Apte, T. Zhang, Active learning using adaptive resampling, in: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000 pp. 91-98.
-
(2000)
, pp. 91-98
-
-
Iyengar, V.S.1
Apte, C.2
Zhang, T.3
-
20
-
-
48849089269
-
Adaptive machine learning in delayed feedback domains by selective relearning
-
Ludl M.C., Lewandowski A. Adaptive machine learning in delayed feedback domains by selective relearning. Appl. Artif. Intell. 2008, 22:543-557.
-
(2008)
Appl. Artif. Intell.
, vol.22
, pp. 543-557
-
-
Ludl, M.C.1
Lewandowski, A.2
-
21
-
-
0037527188
-
Improving predictive inference under covariate shift by weighting the log-likelihood function
-
Shimodaira H. Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plann. Inference 2000, 90:227-244.
-
(2000)
J. Stat. Plann. Inference
, vol.90
, pp. 227-244
-
-
Shimodaira, H.1
-
22
-
-
0000217085
-
Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
-
Aha D.W. Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. Int. J. Man-Mach. Stud. 1992, 36:267-287.
-
(1992)
Int. J. Man-Mach. Stud.
, vol.36
, pp. 267-287
-
-
Aha, D.W.1
-
23
-
-
0343081513
-
Reduction techniques for instance based learning algorithms
-
Wilson D.R., Martinez T. Reduction techniques for instance based learning algorithms. Mach. Learn. 2000, 38:257-286.
-
(2000)
Mach. Learn.
, vol.38
, pp. 257-286
-
-
Wilson, D.R.1
Martinez, T.2
-
25
-
-
0035792033
-
-
Learning of neural networks with GA-based instance selection, in: Proceedings of the IFSA World Congress and 20th NAFIPS International Conference 4
-
H. Ishibuchi, T. Nakashima, M. Nii, Learning of neural networks with GA-based instance selection, in: Proceedings of the IFSA World Congress and 20th NAFIPS International Conference 4, 2001 pp. 2102-2107.
-
(2001)
, pp. 2102-2107
-
-
Ishibuchi, H.1
Nakashima, T.2
Nii, M.3
-
26
-
-
0141830857
-
Stopping criterion for boosting-based data reduction techniques: from binary to multiclass problems
-
Sebban M., Nock R., Lallich S. Stopping criterion for boosting-based data reduction techniques: from binary to multiclass problems. J. Mach. Learn. Res. 2002, 3:863-865.
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 863-865
-
-
Sebban, M.1
Nock, R.2
Lallich, S.3
-
27
-
-
84901601563
-
-
Pruning improves heuristic search for cost-sensitive learning, in: Proceedings of the International Conference on Machine Learning
-
V.B. Zubek, T.G. Dietterich, Pruning improves heuristic search for cost-sensitive learning, in: Proceedings of the International Conference on Machine Learning, 2002, pp. 27-34.
-
(2002)
, pp. 27-34
-
-
Zubek, V.B.1
Dietterich, T.G.2
-
28
-
-
85132303221
-
Feature weighting and instance selection for collaborative filtering: an information-theoretic approach
-
Yu1 K., Xu1 X., Ester M., Kriegel H.P. Feature weighting and instance selection for collaborative filtering: an information-theoretic approach. Knowl. Inf. Syst. 2003, 5:201-224.
-
(2003)
Knowl. Inf. Syst.
, vol.5
, pp. 201-224
-
-
Yu1, K.1
Xu1, X.2
Ester, M.3
Kriegel, H.P.4
-
29
-
-
77956918947
-
A review of instance selection methods
-
Lopez J.A.O., Ochoa J.A.C., Trinidad J.F.M., Kittler J. A review of instance selection methods. Artif. Intell. Rev. 2010, 34:133-143.
-
(2010)
Artif. Intell. Rev.
, vol.34
, pp. 133-143
-
-
Lopez, J.A.O.1
Ochoa, J.A.C.2
Trinidad, J.F.M.3
Kittler, J.4
-
30
-
-
9444236865
-
-
Comparison of instances seletion algorithms I, in: Proceedings of the Artificial Intelligence and Soft Computing-ICAISC 2004
-
N. Jankowski, M. Grochowski, Comparison of instances seletion algorithms I, in: Proceedings of the Artificial Intelligence and Soft Computing-ICAISC 2004, 2004, pp. 598-603.
-
(2004)
, pp. 598-603
-
-
Jankowski, N.1
Grochowski, M.2
-
31
-
-
0031069120
-
Intelligent selection of instances for prediction functions in lazy learning algorithms
-
Zhang J., Yim Y.S., Yang J. Intelligent selection of instances for prediction functions in lazy learning algorithms. Artif. Intell. Rev. 1997, 11:175-191.
-
(1997)
Artif. Intell. Rev.
, vol.11
, pp. 175-191
-
-
Zhang, J.1
Yim, Y.S.2
Yang, J.3
-
32
-
-
77957995908
-
-
k-NN based LS-SVM framework for long-term time series prediction, in: Proceedings of the 2010 IEEE International Conference on Information Reuse and Integration
-
Z. Huang, M.L. Shyu, k-NN based LS-SVM framework for long-term time series prediction, in: Proceedings of the 2010 IEEE International Conference on Information Reuse and Integration, 2010, pp. 69-74.
-
(2010)
, pp. 69-74
-
-
Huang, Z.1
Shyu, M.L.2
-
33
-
-
84868316661
-
Long-term time series prediction using k-NN based LS-SVM framework with multi-value integration
-
Springer
-
Shyu M.L., Huang Z. Long-term time series prediction using k-NN based LS-SVM framework with multi-value integration. Recent Trends in Information Reuse and Integration 2012, 191-209. Springer.
-
(2012)
Recent Trends in Information Reuse and Integration
, pp. 191-209
-
-
Shyu, M.L.1
Huang, Z.2
-
34
-
-
84901591047
-
-
Instance or prototype selection for function approximation using mutual information, in: Proceedings of the European Symposium on Time Series Prediction-ESTSP 2008
-
A. Guillén, L. Herrera, G. Rubio, Instance or prototype selection for function approximation using mutual information, in: Proceedings of the European Symposium on Time Series Prediction-ESTSP 2008, 2008, pp. 67-75.
-
(2008)
, pp. 67-75
-
-
Guillén, A.1
Herrera, L.2
Rubio, G.3
-
35
-
-
84860136371
-
Adaptive least squares support vector machines method for short-term load forecasting based on mutual information for inputs selection
-
Stojanović M., Božić M., Stanković M., Stajić Z. Adaptive least squares support vector machines method for short-term load forecasting based on mutual information for inputs selection. Int. Rev. Electr. Eng. 2012, 7:3574-3585.
-
(2012)
Int. Rev. Electr. Eng.
, vol.7
, pp. 3574-3585
-
-
Stojanović, M.1
Božić, M.2
Stanković, M.3
Stajić, Z.4
-
36
-
-
79959939223
-
Mutual information analysis: a comprehensive study
-
Batina L., Gierlichs B., Prouff E., Rivain M., Standaert F.X., Charvillon N.V. Mutual information analysis: a comprehensive study. J. Cryptol. 2010, 24:269-291.
-
(2010)
J. Cryptol.
, vol.24
, pp. 269-291
-
-
Batina, L.1
Gierlichs, B.2
Prouff, E.3
Rivain, M.4
Standaert, F.X.5
Charvillon, N.V.6
-
37
-
-
34548170754
-
Methodology for long-term prediction of time series
-
Sorjamaa A., Hao J., Reyhani N., Ji Y., Lendasse A. Methodology for long-term prediction of time series. Neurocomputing 2007, 70:2861-2869.
-
(2007)
Neurocomputing
, vol.70
, pp. 2861-2869
-
-
Sorjamaa, A.1
Hao, J.2
Reyhani, N.3
Ji, Y.4
Lendasse, A.5
-
38
-
-
32944462016
-
Mutual information for the selection of relevant variables in spectrometric nonlinear modeling
-
Rossi F., Lendasse A., Francois D., Wertz V., Verleysen M. Mutual information for the selection of relevant variables in spectrometric nonlinear modeling. Chemom. Intell. Lab. Syst. 2006, 80:215-226.
-
(2006)
Chemom. Intell. Lab. Syst.
, vol.80
, pp. 215-226
-
-
Rossi, F.1
Lendasse, A.2
Francois, D.3
Wertz, V.4
Verleysen, M.5
-
39
-
-
33749828721
-
-
Effective input variable selection for function approximation, in: Proceedings of the International Conference on Artificial Neural Networks-ICANN 2006
-
L.J. Herrera, H. Pomares, I. Rojas, M. Verleysen, A. Guillen, Effective input variable selection for function approximation, in: Proceedings of the International Conference on Artificial Neural Networks-ICANN 2006, 2006, pp. 41-50.
-
(2006)
, pp. 41-50
-
-
Herrera, L.J.1
Pomares, H.2
Rojas, I.3
Verleysen, M.4
Guillen, A.5
-
40
-
-
84860237900
-
Feature selection with missing data using mutual information estimators
-
Doquire G., Verleysen M. Feature selection with missing data using mutual information estimators. Neurocomputing 2012, 90:3-11.
-
(2012)
Neurocomputing
, vol.90
, pp. 3-11
-
-
Doquire, G.1
Verleysen, M.2
-
41
-
-
0024621174
-
On estimation of entropy and mutual information of the continuous distributions
-
Moddemeijer R. On estimation of entropy and mutual information of the continuous distributions. Signal Process. 1989, 16:233-248.
-
(1989)
Signal Process.
, vol.16
, pp. 233-248
-
-
Moddemeijer, R.1
-
42
-
-
0001259448
-
Estimation of mutual information using kernel density estimators
-
Moon Y., Rajagopalan B., Lall U. Estimation of mutual information using kernel density estimators. Phys. Rev. E 1995, 52:2318-2321.
-
(1995)
Phys. Rev. E
, vol.52
, pp. 2318-2321
-
-
Moon, Y.1
Rajagopalan, B.2
Lall, U.3
-
44
-
-
84901630522
-
-
http://www.klab.caltech.edu/~kraskov/MILCA/.
-
-
-
-
45
-
-
34548820639
-
Least dependent component analysis based on mutual information
-
Stogbauer H., Kraskov A., Astakhov S.A., Grassberger P. Least dependent component analysis based on mutual information. Phys. Rev. E 2004, 70:066123.
-
(2004)
Phys. Rev. E
, vol.70
, pp. 066123
-
-
Stogbauer, H.1
Kraskov, A.2
Astakhov, S.A.3
Grassberger, P.4
-
46
-
-
33847674996
-
Resampling methods for parameter-free and robust feature selection with mutual information
-
François D., Rossi F., Wertz V., Verleysen M. Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 2007, 70:1276-1288.
-
(2007)
Neurocomputing
, vol.70
, pp. 1276-1288
-
-
François, D.1
Rossi, F.2
Wertz, V.3
Verleysen, M.4
-
47
-
-
34548170015
-
Recursive prediction for long term time series forecasting using advanced models
-
Herrera L.J., Pomares H., Rojas I., Guillen A., Prieto A., Valenzuela O. Recursive prediction for long term time series forecasting using advanced models. Neurocomputing 2007, 70:2870-2880.
-
(2007)
Neurocomputing
, vol.70
, pp. 2870-2880
-
-
Herrera, L.J.1
Pomares, H.2
Rojas, I.3
Guillen, A.4
Prieto, A.5
Valenzuela, O.6
-
48
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., Vandewalle J. Least Squares Support Vector Machines 2002, World Scientific, Singapore.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
49
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
Arlot S., Celisse A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4:40-79.
-
(2010)
Stat. Surv.
, vol.4
, pp. 40-79
-
-
Arlot, S.1
Celisse, A.2
-
50
-
-
84901599578
-
-
http://www.neural-forecasting-competition.com/NN5/datasets.htm.
-
-
-
-
51
-
-
84857642411
-
Review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
-
Taieb S.B., Bontempi G., Atiya A., Sorjamaa A. review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 2012, 39:7067-7083.
-
(2012)
Expert Syst. Appl.
, vol.39
, pp. 7067-7083
-
-
Taieb, S.B.1
Bontempi, G.2
Atiya, A.3
Sorjamaa, A.4
-
52
-
-
0034288853
-
Out-of-sample tests of forecasting accuracy: an analysis and review
-
Tashman L.J. Out-of-sample tests of forecasting accuracy: an analysis and review. Int. J. Forecast. 2000, 16:437-450.
-
(2000)
Int. J. Forecast.
, vol.16
, pp. 437-450
-
-
Tashman, L.J.1
-
53
-
-
77952552084
-
Feature selection for time series prediction-a combined filter and wrapper approach for neural networks
-
Crone S.F., Kourentzes N. Feature selection for time series prediction-a combined filter and wrapper approach for neural networks. Neurocomputing 2010, 73:1923-1936.
-
(2010)
Neurocomputing
, vol.73
, pp. 1923-1936
-
-
Crone, S.F.1
Kourentzes, N.2
-
54
-
-
84901614867
-
-
http://www.esat.kuleuven.be/sista/lssvmlab/.
-
-
-
-
55
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Dešmar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Dešmar, J.1
-
56
-
-
58149287952
-
An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
-
Garcia S., Herrera F. An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9:2677-2694.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2677-2694
-
-
Garcia, S.1
Herrera, F.2
-
57
-
-
84901599575
-
-
http://www.neural-forecasting-competition.com/NN5/results.htm.
-
-
-
|