-
2
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks 1991, 4(2):251-257.
-
(1991)
Neural Networks
, vol.4
, Issue.2
, pp. 251-257
-
-
Hornik, K.1
-
3
-
-
0034288942
-
The M3-competition: results, conclusions and implications
-
Makridakis S., Hibon M. The M3-competition: results, conclusions and implications. International Journal of Forecasting 2000, 16(4):451-476.
-
(2000)
International Journal of Forecasting
, vol.16
, Issue.4
, pp. 451-476
-
-
Makridakis, S.1
Hibon, M.2
-
4
-
-
0000860595
-
Neural network models for time series forecasts
-
Hill T., O'Connor M., Remus W. Neural network models for time series forecasts. Management Science 1996, 42(7):1082-1092.
-
(1996)
Management Science
, vol.42
, Issue.7
, pp. 1082-1092
-
-
Hill, T.1
O'Connor, M.2
Remus, W.3
-
5
-
-
4344591889
-
Neural network forecasting for seasonal and trend time series
-
Zhang G.P., Qi M. Neural network forecasting for seasonal and trend time series. European Journal of Operational Research 2005, 160(2):501-514.
-
(2005)
European Journal of Operational Research
, vol.160
, Issue.2
, pp. 501-514
-
-
Zhang, G.P.1
Qi, M.2
-
6
-
-
33745941548
-
Findings from evidence-based forecasting: methods for reducing forecast error
-
Armstrong J.S. Findings from evidence-based forecasting: methods for reducing forecast error. International Journal of Forecasting 2006, 22(3):583-598.
-
(2006)
International Journal of Forecasting
, vol.22
, Issue.3
, pp. 583-598
-
-
Armstrong, J.S.1
-
7
-
-
0033105287
-
Model selection in neural networks
-
Anders U., Korn O. Model selection in neural networks. Neural Networks 1999, 12(2):309-323.
-
(1999)
Neural Networks
, vol.12
, Issue.2
, pp. 309-323
-
-
Anders, U.1
Korn, O.2
-
8
-
-
31744444183
-
A comparison of univariate methods for forecasting electricity demand up to a day ahead
-
Taylor J.W., de Menezes L.M., McSharry P.E. A comparison of univariate methods for forecasting electricity demand up to a day ahead. International Journal of Forecasting 2006, 22(1):1-16.
-
(2006)
International Journal of Forecasting
, vol.22
, Issue.1
, pp. 1-16
-
-
Taylor, J.W.1
de Menezes, L.M.2
McSharry, P.E.3
-
12
-
-
0003410292
-
-
Prentice-Hall, Englewood Cliffs, NJ [u.a.]
-
Box G.E.P., Jenkins G.M., Reinsel G.C., et al. Time Series Analysis: Forecasting and Control 1994, Prentice-Hall, Englewood Cliffs, NJ [u.a.]. 3rd ed.
-
(1994)
Time Series Analysis: Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.M.2
Reinsel, G.C.3
-
13
-
-
0029714384
-
Neural networks for time series processing
-
Dorffner G. Neural networks for time series processing. Neural Network World 1996, 6(4):447-468.
-
(1996)
Neural Network World
, vol.6
, Issue.4
, pp. 447-468
-
-
Dorffner, G.1
-
14
-
-
0002748218
-
How neural nets work
-
American Institute of Physics, New York, D.Z. Anderson (Ed.)
-
Lapedes A., Farber R. How neural nets work. Neural Information Processing Systems 1988, 442-456. American Institute of Physics, New York. D.Z. Anderson (Ed.).
-
(1988)
Neural Information Processing Systems
, pp. 442-456
-
-
Lapedes, A.1
Farber, R.2
-
15
-
-
0001181242
-
Improving the pricing of options: a neural network approach
-
Anders U., Korn O., Schmitt C. Improving the pricing of options: a neural network approach. Journal of Forecasting 1998, 17(5-6):369-388.
-
(1998)
Journal of Forecasting
, vol.17
, Issue.5-6
, pp. 369-388
-
-
Anders, U.1
Korn, O.2
Schmitt, C.3
-
16
-
-
84979404783
-
Backpropagation in time-series forecasting
-
Lachtermacher G., Fuller J.D. Backpropagation in time-series forecasting. Journal of Forecasting 1995, 14(4):381-393.
-
(1995)
Journal of Forecasting
, vol.14
, Issue.4
, pp. 381-393
-
-
Lachtermacher, G.1
Fuller, J.D.2
-
18
-
-
10644282144
-
The accuracy of a procedural approach to specifying feedforward neural networks for forecasting
-
Liao K.P., Fildes R. The accuracy of a procedural approach to specifying feedforward neural networks for forecasting. Computers & Operations Research 2005, 32(8):2151-2169.
-
(2005)
Computers & Operations Research
, vol.32
, Issue.8
, pp. 2151-2169
-
-
Liao, K.P.1
Fildes, R.2
-
19
-
-
0000032342
-
How effective are neural networks at forecasting and prediction? A review and evaluation
-
Adya M., Collopy F. How effective are neural networks at forecasting and prediction? A review and evaluation. Journal of Forecasting 1998, 17(5-6):481-495.
-
(1998)
Journal of Forecasting
, vol.17
, Issue.5-6
, pp. 481-495
-
-
Adya, M.1
Collopy, F.2
-
20
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., John G.H. Wrappers for feature subset selection. Artificial Intelligence 1997, 97(1-2):273-324.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
21
-
-
0034288854
-
Automatic neural network modeling for univariate time series
-
Balkin S.D., Ord J.K. Automatic neural network modeling for univariate time series. International Journal of Forecasting 2000, 16(4):509-515.
-
(2000)
International Journal of Forecasting
, vol.16
, Issue.4
, pp. 509-515
-
-
Balkin, S.D.1
Ord, J.K.2
-
23
-
-
58849132454
-
OP-ELM: theory, experiments and a toolbox
-
Miche Y., Sorjamaa A., Lendasse A. OP-ELM: theory, experiments and a toolbox. Artificial Neural Networks - Icann 2008, Pt I 2008, 5163:145-154.
-
(2008)
Artificial Neural Networks - Icann 2008, Pt I
, vol.5163
, pp. 145-154
-
-
Miche, Y.1
Sorjamaa, A.2
Lendasse, A.3
-
24
-
-
34548170754
-
Methodology for long-term prediction of time series
-
Sorjamaa A., Hao J., Reyhani N., et al. Methodology for long-term prediction of time series. Neurocomputing 2007, 70(16-18):2861-2869.
-
(2007)
Neurocomputing
, vol.70
, Issue.16-18
, pp. 2861-2869
-
-
Sorjamaa, A.1
Hao, J.2
Reyhani, N.3
-
25
-
-
56349083799
-
-
Et al., Long-term prediction of time series using NNE-based projection and OP-ELM, in: 2008 IEEE International Joint Conference on Neural Networks.
-
A. Sorjamaa, Y. Miche, R. Weiss, et al., Long-term prediction of time series using NNE-based projection and OP-ELM, in: 2008 IEEE International Joint Conference on Neural Networks, vols. 1-8, 2008, pp. 2674-2680.
-
(2008)
, pp. 2674-2680
-
-
Sorjamaa, A.1
Miche, Y.2
Weiss, R.3
-
26
-
-
0033365782
-
Neural model identification, variable selection and model adequacy
-
Refenes A.P.N., Zapranis A.D. Neural model identification, variable selection and model adequacy. Journal of Forecasting 1999, 18(5):299-332.
-
(1999)
Journal of Forecasting
, vol.18
, Issue.5
, pp. 299-332
-
-
Refenes, A.P.N.1
Zapranis, A.D.2
-
27
-
-
31644446914
-
Building neural network models for time series: a statistical approach
-
Medeiros M.C., Terasvirta T., Rech G. Building neural network models for time series: a statistical approach. Journal of Forecasting 2006, 25(1):49-75.
-
(2006)
Journal of Forecasting
, vol.25
, Issue.1
, pp. 49-75
-
-
Medeiros, M.C.1
Terasvirta, T.2
Rech, G.3
-
28
-
-
33644686999
-
Optimization-based feature selection with adaptive instance sampling
-
Yang J.Y., Olafsson S. Optimization-based feature selection with adaptive instance sampling. Computers & Operations Research 2006, 33(11):3088-3106.
-
(2006)
Computers & Operations Research
, vol.33
, Issue.11
, pp. 3088-3106
-
-
Yang, J.Y.1
Olafsson, S.2
-
29
-
-
1442307850
-
Evaluating feature selection methods for learning in data mining applications
-
Piramuthu S. Evaluating feature selection methods for learning in data mining applications. European Journal of Operational Research 2004, 156(2):483-494.
-
(2004)
European Journal of Operational Research
, vol.156
, Issue.2
, pp. 483-494
-
-
Piramuthu, S.1
-
30
-
-
0007613151
-
Wrapped input selection using multilayer perceptrons for repeat-purchase modeling in direct marketing
-
Viaene S., Baesens B., Van den Poel D., et al. Wrapped input selection using multilayer perceptrons for repeat-purchase modeling in direct marketing. International Journal of Intelligent Systems in Accounting, Finance & Management 2001, 10(2):115-126.
-
(2001)
International Journal of Intelligent Systems in Accounting, Finance & Management
, vol.10
, Issue.2
, pp. 115-126
-
-
Viaene, S.1
Baesens, B.2
Van den Poel, D.3
-
31
-
-
14944368253
-
Customer targeting: a neural network approach guided by genetic algorithms
-
Kim Y.S., Street W.N., Russell G.J., et al. Customer targeting: a neural network approach guided by genetic algorithms. Management Science 2005, 51:264.
-
(2005)
Management Science
, vol.51
, pp. 264
-
-
Kim, Y.S.1
Street, W.N.2
Russell, G.J.3
-
35
-
-
0003123930
-
Forecasting with artificial neural networks: the state of the art
-
Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting 1998, 14(1):35-62.
-
(1998)
International Journal of Forecasting
, vol.14
, Issue.1
, pp. 35-62
-
-
Zhang, G.1
Patuwo, B.E.2
Hu, M.Y.3
-
37
-
-
0000393458
-
Feed-forward neural nets as models for time series forecasting
-
Tang Z.Y., Fishwick P.A. Feed-forward neural nets as models for time series forecasting. ORSA Journal on Computing 1993, 5(4):374-386.
-
(1993)
ORSA Journal on Computing
, vol.5
, Issue.4
, pp. 374-386
-
-
Tang, Z.Y.1
Fishwick, P.A.2
-
38
-
-
0003947410
-
-
John Wiley & Sons Inc., New York
-
Makridakis S., Wheelwright S.C., Hyndman R.J. Forecasting: Methods and Applications 1998, John Wiley & Sons Inc., New York, p. 642. 3rd ed.
-
(1998)
Forecasting: Methods and Applications
, pp. 642
-
-
Makridakis, S.1
Wheelwright, S.C.2
Hyndman, R.J.3
-
39
-
-
0032367976
-
Data mining: statistics and more?
-
Hand D.J. Data mining: statistics and more?. American Statistician 1998, 52(2):112-118.
-
(1998)
American Statistician
, vol.52
, Issue.2
, pp. 112-118
-
-
Hand, D.J.1
-
40
-
-
0031521391
-
Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models
-
Swanson N.R., White H. Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models. International Journal of Forecasting 1997, 13(4):439-461.
-
(1997)
International Journal of Forecasting
, vol.13
, Issue.4
, pp. 439-461
-
-
Swanson, N.R.1
White, H.2
-
41
-
-
0001606625
-
Economic factors and the stock market: a new perspective
-
Qi M., Maddala G.S. Economic factors and the stock market: a new perspective. Journal of Forecasting 1999, 18(3):151-166.
-
(1999)
Journal of Forecasting
, vol.18
, Issue.3
, pp. 151-166
-
-
Qi, M.1
Maddala, G.S.2
-
42
-
-
1842710025
-
Flexible regression models and relative forecast performance
-
Dahl C.M., Hylleberg S. Flexible regression models and relative forecast performance. International Journal of Forecasting 2004, 20(2):201-217.
-
(2004)
International Journal of Forecasting
, vol.20
, Issue.2
, pp. 201-217
-
-
Dahl, C.M.1
Hylleberg, S.2
-
43
-
-
0019636227
-
Spectrum analysis - a modern perspective
-
Kay S.M., Marple S.L. Spectrum analysis - a modern perspective. Proceedings of the IEEE 1981, 69(11):1380-1419.
-
(1981)
Proceedings of the IEEE
, vol.69
, Issue.11
, pp. 1380-1419
-
-
Kay, S.M.1
Marple, S.L.2
-
46
-
-
77952553522
-
-
Forecasting seasonal time series with multilayer perceptrons - an empirical evaluation of input vector specifications for deterministic seasonality.
-
S. Crone, N. Kourentzes, Forecasting seasonal time series with multilayer perceptrons - an empirical evaluation of input vector specifications for deterministic seasonality, pp. 232-238.
-
-
-
Crone, S.1
Kourentzes, N.2
-
47
-
-
0009589301
-
How to train neural networks
-
Springer, Berlin, New York, G. Orr, K.-R. Müller (Eds.)
-
Neuneier R., Zimmermann H.-G. How to train neural networks. Neural Networks: Tricks of the Trade 1998, 373-423. Springer, Berlin, New York. G. Orr, K.-R. Müller (Eds.).
-
(1998)
Neural Networks: Tricks of the Trade
, pp. 373-423
-
-
Neuneier, R.1
Zimmermann, H.-G.2
-
48
-
-
0000902316
-
Time series forecasting using neural networks: should the data be deseasonalized first?
-
Nelson M., Hill T., Remus W., et al. Time series forecasting using neural networks: should the data be deseasonalized first?. Journal of Forecasting 1999, 18(5):359-367.
-
(1999)
Journal of Forecasting
, vol.18
, Issue.5
, pp. 359-367
-
-
Nelson, M.1
Hill, T.2
Remus, W.3
-
49
-
-
77952548784
-
-
Case Wetsern Reserve University, Cleveland
-
Zhou L., Collopy F., Kennedy M. The Problem of Neural Networks in Business Forecasting - An Attempt to Reproduc th Hill, O'Connor and Remus Study 2003, Case Wetsern Reserve University, Cleveland.
-
(2003)
The Problem of Neural Networks in Business Forecasting - An Attempt to Reproduc th Hill, O'Connor and Remus Study
-
-
Zhou, L.1
Collopy, F.2
Kennedy, M.3
-
50
-
-
77952549906
-
-
The impact of Data Preprocessing on Support Vector Regression and Artificial Neural Networks in Time Series Forecasting.
-
S.F. Crone, J. Guajardo, R. Weber, The impact of Data Preprocessing on Support Vector Regression and Artificial Neural Networks in Time Series Forecasting.
-
-
-
Crone, S.F.1
Guajardo, J.2
Weber, R.3
-
51
-
-
77952541174
-
-
A study on the ability of Support Vector Regression and Neural Networks to Forecast Basic Time Series Patterns.
-
S.F. Crone, J. Guajardo, R. Weber, A study on the ability of Support Vector Regression and Neural Networks to Forecast Basic Time Series Patterns.
-
-
-
Crone, S.F.1
Guajardo, J.2
Weber, R.3
-
52
-
-
77952541023
-
-
An empirical Evaluation of Support Vector Regression versus Artificial Neural Networks to Forecast basic Time Series Patterns.
-
S.F. Crone, S. Lessmann, S. Pietsch, An empirical Evaluation of Support Vector Regression versus Artificial Neural Networks to Forecast basic Time Series Patterns.
-
-
-
Crone, S.F.1
Lessmann, S.2
Pietsch, S.3
-
53
-
-
22444452861
-
Extracting information from mega-panels and high-frequency data
-
Granger C.W.J. Extracting information from mega-panels and high-frequency data. Statistica Neerlandica 1998, 52(3):258-272.
-
(1998)
Statistica Neerlandica
, vol.52
, Issue.3
, pp. 258-272
-
-
Granger, C.W.J.1
-
54
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
55
-
-
77952547695
-
-
Input variable selection for time series prediction with neural networks - an evaluation of visual, autocorrelation and spectral analysis for varying seasonality.
-
S.F. Crone, N. Kourentzes, Input variable selection for time series prediction with neural networks - an evaluation of visual, autocorrelation and spectral analysis for varying seasonality, pp. 195-205.
-
-
-
Crone, S.F.1
Kourentzes, N.2
-
56
-
-
4344586989
-
Linear versus neural network forecasts for European industrial production series
-
Heravi S., Osborn D.R., Birchenhall C.R. Linear versus neural network forecasts for European industrial production series. International Journal of Forecasting 2004, 20(3):435-446.
-
(2004)
International Journal of Forecasting
, vol.20
, Issue.3
, pp. 435-446
-
-
Heravi, S.1
Osborn, D.R.2
Birchenhall, C.R.3
-
57
-
-
0035315158
-
Automatic identification of time series features for rule-based forecasting
-
Adya M., Collopy F., Armstrong J.S., et al. Automatic identification of time series features for rule-based forecasting. International Journal of Forecasting 2001, 17(2):143-157.
-
(2001)
International Journal of Forecasting
, vol.17
, Issue.2
, pp. 143-157
-
-
Adya, M.1
Collopy, F.2
Armstrong, J.S.3
-
58
-
-
0002847043
-
The evaluation of extrapolative forecasting methods
-
Fildes R. The evaluation of extrapolative forecasting methods. International Journal of Forecasting 1992, 8(1):81-98.
-
(1992)
International Journal of Forecasting
, vol.8
, Issue.1
, pp. 81-98
-
-
Fildes, R.1
-
59
-
-
0034288853
-
Out-of-sample tests of forecasting accuracy: an analysis and review
-
Tashman L.J. Out-of-sample tests of forecasting accuracy: an analysis and review. International Journal of Forecasting 2000, 16(4):437-450.
-
(2000)
International Journal of Forecasting
, vol.16
, Issue.4
, pp. 437-450
-
-
Tashman, L.J.1
-
60
-
-
0034288853
-
Out-of-sample tests of forecasting accuracy: an analysis and review
-
Tashman L. Out-of-sample tests of forecasting accuracy: an analysis and review. International Journal of Forecasting 2000, 16:437-450.
-
(2000)
International Journal of Forecasting
, vol.16
, pp. 437-450
-
-
Tashman, L.1
-
61
-
-
0002006114
-
Error measures for generalizing about forecasting methods: empirical comparisons
-
Armstrong J.S., Collopy F. Error measures for generalizing about forecasting methods: empirical comparisons. International Journal of Forecasting 1992, 8(1):69-80.
-
(1992)
International Journal of Forecasting
, vol.8
, Issue.1
, pp. 69-80
-
-
Armstrong, J.S.1
Collopy, F.2
-
63
-
-
33749523557
-
Exponential smoothing: the state of the art - Part II
-
Gardner E.S. Exponential smoothing: the state of the art - Part II. International Journal of Forecasting 2006, 22(4):637-666.
-
(2006)
International Journal of Forecasting
, vol.22
, Issue.4
, pp. 637-666
-
-
Gardner, E.S.1
|