메뉴 건너뛰기




Volumn 90, Issue , 2012, Pages 3-11

Feature selection with missing data using mutual information estimators

Author keywords

Feature selection; Missing data; Mutual information

Indexed keywords

IMPUTATION ALGORITHM; MISSING DATA; MUTUAL INFORMATIONS; NEAREST NEIGHBORS; PREDICTION MODEL; PREDICTION PROBLEM; RANDOM DATA; REAL-WORLD DATASETS; REAL-WORLD PROBLEM;

EID: 84860237900     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.02.031     Document Type: Article
Times cited : (76)

References (46)
  • 1
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: our view of the state of the art
    • Schafer J.L., Graham J.W. Missing data: our view of the state of the art. Psycholog. Methods 2002, 7(2):147-177.
    • (2002) Psycholog. Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 3
    • 0035285349 scopus 로고    scopus 로고
    • Analyzing incomplete political science data: an alternative algorithm for multiple imputation
    • King G., Honaker J., Joseph A., Scheve K. Analyzing incomplete political science data: an alternative algorithm for multiple imputation. Am. Polit. Sci. Rev. 2000, 95:49-69.
    • (2000) Am. Polit. Sci. Rev. , vol.95 , pp. 49-69
    • King, G.1    Honaker, J.2    Joseph, A.3    Scheve, K.4
  • 4
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin D.B. Inference and missing data. Biometrika 1976, 63:581-592. 10.1093/biomet/63.3.581.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 5
    • 33645723230 scopus 로고    scopus 로고
    • Working with missing values
    • Acock A.C. Working with missing values. J. Marriage Family 2005, 67:1012-1028.
    • (2005) J. Marriage Family , vol.67 , pp. 1012-1028
    • Acock, A.C.1
  • 6
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 8
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I.n., Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 9
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Proceedings of the Fourteenth International Conference on Machine Learning, ICML '97, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • Y. Yang, J.O. Pedersen, A comparative study on feature selection in text categorization, in: Proceedings of the Fourteenth International Conference on Machine Learning, ICML '97, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997, pp. 412-420.
    • (1997) , pp. 412-420
    • Yang, Y.1    Pedersen, J.O.2
  • 10
    • 32944462016 scopus 로고    scopus 로고
    • Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
    • Rossi F., Lendasse A., Francois D., Wertz V., Verleysen M. Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemomet. Intell. Lab. Syst. 2006, 80:215-226.
    • (2006) Chemomet. Intell. Lab. Syst. , vol.80 , pp. 215-226
    • Rossi, F.1    Lendasse, A.2    Francois, D.3    Wertz, V.4    Verleysen, M.5
  • 12
    • 85088919043 scopus 로고    scopus 로고
    • Mutual information for feature selection with missing data
    • Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2011)
    • G. Doquire, M. Verleysen, Mutual information for feature selection with missing data, in: Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2011), 2011.
    • (2011)
    • Doquire, G.1    Verleysen, M.2
  • 13
    • 85023557988 scopus 로고
    • Unknown attribute values in induction
    • Proceedings of the Sixth International Machine Learning Workshop, Morgan Kaufmann
    • J.R. Quinlan, Unknown attribute values in induction, in: Proceedings of the Sixth International Machine Learning Workshop, Morgan Kaufmann, 1989, pp. 164-168.
    • (1989) , pp. 164-168
    • Quinlan, J.R.1
  • 16
    • 47949104761 scopus 로고    scopus 로고
    • Incomplete-case nearest neighbor imputation in software measurement data
    • Proceedings of the IEEE International Conference on Information Reuse and Integration, IRI 2007
    • J.V. Hulse, T.M. Khoshgoftaar, Incomplete-case nearest neighbor imputation in software measurement data, in: Proceedings of the IEEE International Conference on Information Reuse and Integration, IRI 2007, 2007, pp. 630-637.
    • (2007) , pp. 630-637
    • Hulse, J.V.1    Khoshgoftaar, T.M.2
  • 17
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
    • T. Schneider, Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values, J. Clim. 14 (5) (2001) 853-871.
    • (2001) J. Clim. , vol.14 , Issue.5 , pp. 853-871
    • Schneider, T.1
  • 19
    • 31844435714 scopus 로고    scopus 로고
    • Incomplete-data classification using logistic regression
    • In ICML, ACM Press
    • D. Williams, X. Liao, Y. Xue, L. Carin, Incomplete-data classification using logistic regression, in: In ICML, ACM Press, 2005, pp. 972-979.
    • (2005) , pp. 972-979
    • Williams, D.1    Liao, X.2    Xue, Y.3    Carin, L.4
  • 20
    • 77954873401 scopus 로고    scopus 로고
    • Clustering with missing values: no imputation required
    • Proceedings of the Meeting of the International Federation of Classification Societies
    • K. Wagstaff, Clustering with missing values: no imputation required, in: Proceedings of the Meeting of the International Federation of Classification Societies, 2004, pp. 649-658.
    • (2004) , pp. 649-658
    • Wagstaff, K.1
  • 21
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 22
    • 0004060921 scopus 로고    scopus 로고
    • Correlation-based Feature Selection for Machine Learning
    • Ph.D. Thesis, University of Waikato
    • M. Hall, Correlation-based Feature Selection for Machine Learning, Ph.D. Thesis, University of Waikato, 1999.
    • (1999)
    • Hall, M.1
  • 23
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 24
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: detecting and evaluating dependencies between variables
    • Steuer R., Kurths J., Daub C.O., Weise J., Selbig J. The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 2002, 18(Suppl. 2):S231-S240.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 2
    • Steuer, R.1    Kurths, J.2    Daub, C.O.3    Weise, J.4    Selbig, J.5
  • 25
    • 83455217064 scopus 로고    scopus 로고
    • A new perspective for information theoretic feature selection
    • Brown G. A new perspective for information theoretic feature selection. J. Mach. Learn. Res.: Proc. Track 2009, 5:49-56.
    • (2009) J. Mach. Learn. Res.: Proc. Track , vol.5 , pp. 49-56
    • Brown, G.1
  • 26
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 2005, 67:301-320.
    • (2005) J. R. Stat. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 27
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M., Lin Y. Model selection and estimation in regression with grouped variables. J. R Stat. Soc., Ser. B 2006, 68:49-67.
    • (2006) J. R Stat. Soc., Ser. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 28
    • 0142233479 scopus 로고    scopus 로고
    • Robust feature selection by mutual information distributions
    • Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence (UAI-2002), Morgan Kaufmann
    • M. Zaffalon, M. Hutter, Robust feature selection by mutual information distributions, in: Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence (UAI-2002), Morgan Kaufmann, 2002, pp. 577-584.
    • (2002) , pp. 577-584
    • Zaffalon, M.1    Hutter, M.2
  • 29
    • 52449099188 scopus 로고    scopus 로고
    • Combination of knn-based feature selection and knn-based missing-value imputation of microarray data
    • Proceedings of the 2008 Third International Conference on Innovative Computing Information and Control, IEEE Computer Society, Washington, DC, USA
    • P. Meesad, K. Hengpraprohm, Combination of knn-based feature selection and knn-based missing-value imputation of microarray data, in: Proceedings of the 2008 Third International Conference on Innovative Computing Information and Control, IEEE Computer Society, Washington, DC, USA, 2008, pp. 341-344.
    • (2008) , pp. 341-344
    • Meesad, P.1    Hengpraprohm, K.2
  • 30
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27:379-423.
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 31
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 1994, 5:537-550. 10.1109/72.298224.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 32
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret F. Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 2004, 5:1531-1555.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 33
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S., Leibler R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22(1):79-86.
    • (1951) Ann. Math. Stat. , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 34
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33(3):1065-1076.
    • (1962) Ann. Math. Stat. , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 36
    • 0023325560 scopus 로고
    • Sample estimate of the entropy of a random vector
    • Kozachenko L.F., Leonenko N. Sample estimate of the entropy of a random vector. Prob. Inf. Transm. 1987, 23:95-101.
    • (1987) Prob. Inf. Transm. , vol.23 , pp. 95-101
    • Kozachenko, L.F.1    Leonenko, N.2
  • 37
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • Francois D., Rossi F., Wertz V., Verleysen M. Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 2007, 70(7-9):1276-1288.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1276-1288
    • Francois, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 39
    • 78549279482 scopus 로고    scopus 로고
    • A new approach to dealing with missing values in data-driven fuzzy modeling
    • Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ)
    • R.J. Almeida, U. Kaymak, J.M.C. Sousa, A new approach to dealing with missing values in data-driven fuzzy modeling, in: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ), 2010, pp. 1-7.
    • (2010) , pp. 1-7
    • Almeida, R.J.1    Kaymak, U.2    Sousa, J.M.C.3
  • 40
    • 84860231129 scopus 로고    scopus 로고
    • Combination of SOMs for fast missing value imputation
    • Proceedings of MASHS, Models and Learnings in Human and social Sciences
    • A. Sorjamaa, A. Lendasse, E. Séverin, Combination of SOMs for fast missing value imputation, in: Proceedings of MASHS, Models and Learnings in Human and social Sciences, 2010.
    • (2010)
    • Sorjamaa, A.1    Lendasse, A.2    Séverin, E.3
  • 42
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19(1):1-67.
    • (1991) Ann. Stat. , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 43
    • 15844383263 scopus 로고    scopus 로고
    • Representation of functional data in neural networks
    • (Trends in Neurocomputing: 12th European Symposium on Artificial Neural Networks 2004)
    • Rossi F., Delannay N., Conan-Guez B., Verleysen M. Representation of functional data in neural networks. Neurocomputing 2005, 64:183-210. (Trends in Neurocomputing: 12th European Symposium on Artificial Neural Networks 2004).
    • (2005) Neurocomputing , vol.64 , pp. 183-210
    • Rossi, F.1    Delannay, N.2    Conan-Guez, B.3    Verleysen, M.4
  • 44
  • 45
    • 0345328110 scopus 로고    scopus 로고
    • On the kernel widths in radial-basis function networks
    • Benoudjit N., Verleysen M. On the kernel widths in radial-basis function networks. Neural Process. Lett. 2003, 18(2):139-154. http://dx.doi.org/10.1023/A:1026289910256.
    • (2003) Neural Process. Lett. , vol.18 , Issue.2 , pp. 139-154
    • Benoudjit, N.1    Verleysen, M.2
  • 46
    • 69249222802 scopus 로고    scopus 로고
    • Information-theoretic feature selection for functional data classification
    • Gomez-Verdejo V., Verleysen M., Fleury J. Information-theoretic feature selection for functional data classification. Neurocomputing 2009, 72(16-18):3580-3589.
    • (2009) Neurocomputing , vol.72 , Issue.16-18 , pp. 3580-3589
    • Gomez-Verdejo, V.1    Verleysen, M.2    Fleury, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.