메뉴 건너뛰기




Volumn 24, Issue 6, 2014, Pages 352-359

Perilous journey: A tour of the ubiquitin-proteasome system

Author keywords

E1 activating; E2 conjugating; E3 ligase; Proteolysis; Ubiquitin proteasome system

Indexed keywords

DNA 26S; PROTEASOME; PROTEINASE; UBIQUITIN CONJUGATING ENZYME E1; UBIQUITIN CONJUGATING ENZYME E2; UBIQUITIN CONJUGATING ENZYME E3; UNCLASSIFIED DRUG; ATP DEPENDENT 26S PROTEASE; UBIQUITIN; UBIQUITIN PROTEIN LIGASE;

EID: 84901466274     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2013.12.003     Document Type: Review
Times cited : (277)

References (88)
  • 2
    • 63049125531 scopus 로고    scopus 로고
    • Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
    • Xu P., et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009, 137:133-145.
    • (2009) Cell , vol.137 , pp. 133-145
    • Xu, P.1
  • 3
    • 59649103156 scopus 로고    scopus 로고
    • Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation
    • Tokunaga F., et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol. 2009, 11:123-132.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 123-132
    • Tokunaga, F.1
  • 5
    • 67349256160 scopus 로고    scopus 로고
    • Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways
    • Schulman B.A., Harper J.W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 2009, 10:319-331.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 319-331
    • Schulman, B.A.1    Harper, J.W.2
  • 6
    • 35148886143 scopus 로고    scopus 로고
    • Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics
    • Yang Y., et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 2007, 67:9472-9481.
    • (2007) Cancer Res. , vol.67 , pp. 9472-9481
    • Yang, Y.1
  • 7
    • 33846548206 scopus 로고    scopus 로고
    • Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity
    • Huang D.T., et al. Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Nature 2007, 445:394-398.
    • (2007) Nature , vol.445 , pp. 394-398
    • Huang, D.T.1
  • 8
    • 77249138804 scopus 로고    scopus 로고
    • Active site remodelling accompanies thioester bond formation in the SUMO E1
    • Olsen S.K., et al. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature 2010, 463:906-912.
    • (2010) Nature , vol.463 , pp. 906-912
    • Olsen, S.K.1
  • 9
    • 84876864015 scopus 로고    scopus 로고
    • Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer
    • Olsen S.K., Lima C.D. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Mol. Cell 2013, 49:884-896.
    • (2013) Mol. Cell , vol.49 , pp. 884-896
    • Olsen, S.K.1    Lima, C.D.2
  • 10
    • 0035891318 scopus 로고    scopus 로고
    • Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex
    • Lake M.W., et al. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 2001, 414:325-329.
    • (2001) Nature , vol.414 , pp. 325-329
    • Lake, M.W.1
  • 11
    • 47549111312 scopus 로고    scopus 로고
    • Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes
    • Lee I., Schindelin H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 2008, 134:268-278.
    • (2008) Cell , vol.134 , pp. 268-278
    • Lee, I.1    Schindelin, H.2
  • 12
    • 14844291338 scopus 로고    scopus 로고
    • Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1
    • Lois L.M., Lima C.D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 2005, 24:439-451.
    • (2005) EMBO J. , vol.24 , pp. 439-451
    • Lois, L.M.1    Lima, C.D.2
  • 13
    • 0347416977 scopus 로고    scopus 로고
    • The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1
    • Walden H., et al. The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell 2003, 12:1427-1437.
    • (2003) Mol. Cell , vol.12 , pp. 1427-1437
    • Walden, H.1
  • 14
    • 60549091914 scopus 로고    scopus 로고
    • E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification
    • Huang D.T., et al. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol. Cell 2009, 33:483-495.
    • (2009) Mol. Cell , vol.33 , pp. 483-495
    • Huang, D.T.1
  • 15
    • 84855254067 scopus 로고    scopus 로고
    • E1-E2 interactions in ubiquitin and Nedd8 ligation pathways
    • Tokgoz Z., et al. E1-E2 interactions in ubiquitin and Nedd8 ligation pathways. J. Biol. Chem. 2012, 287:311-321.
    • (2012) J. Biol. Chem. , vol.287 , pp. 311-321
    • Tokgoz, Z.1
  • 16
    • 64749098830 scopus 로고    scopus 로고
    • An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer
    • Soucy T.A., et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009, 458:732-736.
    • (2009) Nature , vol.458 , pp. 732-736
    • Soucy, T.A.1
  • 17
    • 0033120027 scopus 로고    scopus 로고
    • ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity
    • Ohta T., et al. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 1999, 3:535-541.
    • (1999) Mol. Cell , vol.3 , pp. 535-541
    • Ohta, T.1
  • 18
    • 0033120593 scopus 로고    scopus 로고
    • Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha
    • Tan P., et al. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol. Cell 1999, 3:527-533.
    • (1999) Mol. Cell , vol.3 , pp. 527-533
    • Tan, P.1
  • 19
    • 84866124869 scopus 로고    scopus 로고
    • BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer
    • Dou H., et al. BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 2012, 19:876-883.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 876-883
    • Dou, H.1
  • 20
    • 84866858702 scopus 로고    scopus 로고
    • Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases
    • Pruneda J.N., et al. Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 2012, 47:933-942.
    • (2012) Mol. Cell , vol.47 , pp. 933-942
    • Pruneda, J.N.1
  • 21
    • 84865781586 scopus 로고    scopus 로고
    • Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis
    • Plechanovova A., et al. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 2012, 489:115-120.
    • (2012) Nature , vol.489 , pp. 115-120
    • Plechanovova, A.1
  • 22
    • 0034788322 scopus 로고    scopus 로고
    • Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail
    • Hamilton K.S., et al. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 2001, 9:897-904.
    • (2001) Structure , vol.9 , pp. 897-904
    • Hamilton, K.S.1
  • 23
    • 79953296212 scopus 로고    scopus 로고
    • Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate
    • Saha A., et al. Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell 2011, 42:75-83.
    • (2011) Mol. Cell , vol.42 , pp. 75-83
    • Saha, A.1
  • 24
    • 79952290609 scopus 로고    scopus 로고
    • The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2
    • Wickliffe K.E., et al. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 2011, 144:769-781.
    • (2011) Cell , vol.144 , pp. 769-781
    • Wickliffe, K.E.1
  • 25
    • 79952407243 scopus 로고    scopus 로고
    • Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme approximately ubiquitin conjugate
    • Pruneda J.N., et al. Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme approximately ubiquitin conjugate. Biochemistry 2011, 50:1624-1633.
    • (2011) Biochemistry , vol.50 , pp. 1624-1633
    • Pruneda, J.N.1
  • 26
    • 84881478295 scopus 로고    scopus 로고
    • Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3
    • Dou H., et al. Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Nat. Struct. Mol. Biol. 2013, 20:982-986.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 982-986
    • Dou, H.1
  • 27
    • 84881518558 scopus 로고    scopus 로고
    • Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3
    • Kamadurai H.B., et al. Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. eLife 2013, 2:e00828.
    • (2013) eLife , vol.2
    • Kamadurai, H.B.1
  • 28
    • 72149107116 scopus 로고    scopus 로고
    • Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex
    • Kamadurai H.B., et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Mol. Cell 2009, 36:1095-1102.
    • (2009) Mol. Cell , vol.36 , pp. 1095-1102
    • Kamadurai, H.B.1
  • 29
    • 0037249354 scopus 로고    scopus 로고
    • Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase
    • Verdecia M.A., et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 2003, 11:249-259.
    • (2003) Mol. Cell , vol.11 , pp. 249-259
    • Verdecia, M.A.1
  • 30
    • 0032741446 scopus 로고    scopus 로고
    • Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade
    • Huang L., et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 1999, 286:1321-1326.
    • (1999) Science , vol.286 , pp. 1321-1326
    • Huang, L.1
  • 31
    • 84878900697 scopus 로고    scopus 로고
    • Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming
    • Maspero E., et al. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat. Struct. Mol. Biol. 2013, 20:696-701.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 696-701
    • Maspero, E.1
  • 32
    • 23044505285 scopus 로고    scopus 로고
    • Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain
    • Ogunjimi A.A., et al. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell 2005, 19:297-308.
    • (2005) Mol. Cell , vol.19 , pp. 297-308
    • Ogunjimi, A.A.1
  • 33
    • 84879674444 scopus 로고    scopus 로고
    • Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
    • Riley B.E., et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 2013, 4:1982.
    • (2013) Nat. Commun. , vol.4 , pp. 1982
    • Riley, B.E.1
  • 34
    • 84879251778 scopus 로고    scopus 로고
    • Structure of parkin reveals mechanisms for ubiquitin ligase activation
    • Trempe J.F., et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 2013, 340:1451-1455.
    • (2013) Science , vol.340 , pp. 1451-1455
    • Trempe, J.F.1
  • 35
    • 79957949190 scopus 로고    scopus 로고
    • UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
    • Wenzel D.M., et al. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011, 474:105-108.
    • (2011) Nature , vol.474 , pp. 105-108
    • Wenzel, D.M.1
  • 36
    • 84879980089 scopus 로고    scopus 로고
    • A molecular explanation for the recessive nature of parkin-linked Parkinson's disease
    • Spratt D.E., et al. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat. Commun. 2013, 4:1983.
    • (2013) Nat. Commun. , vol.4 , pp. 1983
    • Spratt, D.E.1
  • 37
    • 84878840303 scopus 로고    scopus 로고
    • Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism
    • Duda D.M., et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 2013, 21:1030-1041.
    • (2013) Structure , vol.21 , pp. 1030-1041
    • Duda, D.M.1
  • 38
    • 73649095886 scopus 로고    scopus 로고
    • The acidic tail of the Cdc34 ubiquitin-conjugating enzyme functions in both binding to and catalysis with ubiquitin ligase SCFCdc4
    • Kleiger G., et al. The acidic tail of the Cdc34 ubiquitin-conjugating enzyme functions in both binding to and catalysis with ubiquitin ligase SCFCdc4. J. Biol. Chem. 2009, 284:36012-36023.
    • (2009) J. Biol. Chem. , vol.284 , pp. 36012-36023
    • Kleiger, G.1
  • 39
    • 0030812809 scopus 로고    scopus 로고
    • Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle
    • Yew P.R., Kirschner M.W. Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle. Science 1997, 277:1672-1676.
    • (1997) Science , vol.277 , pp. 1672-1676
    • Yew, P.R.1    Kirschner, M.W.2
  • 40
    • 0034602845 scopus 로고    scopus 로고
    • Recognition of the polyubiquitin proteolytic signal
    • Thrower J.S., et al. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000, 19:94-102.
    • (2000) EMBO J. , vol.19 , pp. 94-102
    • Thrower, J.S.1
  • 41
    • 0024514688 scopus 로고
    • A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein
    • Chau V., et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 1989, 243:1576-1583.
    • (1989) Science , vol.243 , pp. 1576-1583
    • Chau, V.1
  • 42
    • 71449123070 scopus 로고    scopus 로고
    • Detection of sequential polyubiquitylation on a millisecond timescale
    • Pierce N.W., et al. Detection of sequential polyubiquitylation on a millisecond timescale. Nature 2009, 462:615-619.
    • (2009) Nature , vol.462 , pp. 615-619
    • Pierce, N.W.1
  • 43
    • 0020961333 scopus 로고
    • Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division
    • Evans T., et al. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 1983, 33:389-396.
    • (1983) Cell , vol.33 , pp. 389-396
    • Evans, T.1
  • 44
    • 82455179484 scopus 로고    scopus 로고
    • Systematic and quantitative assessment of the ubiquitin-modified proteome
    • Kim W., et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 2011, 44:325-340.
    • (2011) Mol. Cell , vol.44 , pp. 325-340
    • Kim, W.1
  • 45
    • 36749080327 scopus 로고    scopus 로고
    • Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway
    • Mayor T., et al. Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol. Cell. Proteomics 2007, 6:1885-1895.
    • (2007) Mol. Cell. Proteomics , vol.6 , pp. 1885-1895
    • Mayor, T.1
  • 46
    • 84897086751 scopus 로고    scopus 로고
    • False start: cotranslational protein ubiquitination and cytosolic protein quality control
    • Comyn S.A., et al. False start: cotranslational protein ubiquitination and cytosolic protein quality control. J. Proteomics 2013, 10.1016/j.jprot.2013.08.005.
    • (2013) J. Proteomics
    • Comyn, S.A.1
  • 47
    • 84870907436 scopus 로고    scopus 로고
    • Cleaning up: ER-associated degradation to the rescue
    • Brodsky J.L. Cleaning up: ER-associated degradation to the rescue. Cell 2013, 151:1163-1167.
    • (2013) Cell , vol.151 , pp. 1163-1167
    • Brodsky, J.L.1
  • 48
    • 0034643336 scopus 로고    scopus 로고
    • Rapid degradation of a large fraction of newly synthesized proteins by proteasomes
    • Schubert U., et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000, 404:770-774.
    • (2000) Nature , vol.404 , pp. 770-774
    • Schubert, U.1
  • 49
    • 84883229070 scopus 로고    scopus 로고
    • A cotranslational ubiquitination pathway for quality control of misfolded proteins
    • Wang F., et al. A cotranslational ubiquitination pathway for quality control of misfolded proteins. Mol. Cell 2013, 50:368-378.
    • (2013) Mol. Cell , vol.50 , pp. 368-378
    • Wang, F.1
  • 50
    • 84883210213 scopus 로고    scopus 로고
    • Principles of cotranslational ubiquitination and quality control at the ribosome
    • Duttler S., et al. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell 2013, 50:379-393.
    • (2013) Mol. Cell , vol.50 , pp. 379-393
    • Duttler, S.1
  • 51
    • 0034703437 scopus 로고    scopus 로고
    • Detecting and measuring cotranslational protein degradation in vivo
    • Turner G.C., Varshavsky A. Detecting and measuring cotranslational protein degradation in vivo. Science 2000, 289:2117-2120.
    • (2000) Science , vol.289 , pp. 2117-2120
    • Turner, G.C.1    Varshavsky, A.2
  • 52
    • 84865602944 scopus 로고    scopus 로고
    • Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin
    • Dantuma N.P., Hoppe T. Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin. Trends Cell Biol. 2012, 22:483-491.
    • (2012) Trends Cell Biol. , vol.22 , pp. 483-491
    • Dantuma, N.P.1    Hoppe, T.2
  • 53
    • 84875481864 scopus 로고    scopus 로고
    • Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products
    • Defenouillere Q., et al. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5046-5051.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 5046-5051
    • Defenouillere, Q.1
  • 54
    • 84879034688 scopus 로고    scopus 로고
    • Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome
    • Verma R., et al. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. eLife 2013, 2:e00308.
    • (2013) eLife , vol.2
    • Verma, R.1
  • 55
    • 84871523350 scopus 로고    scopus 로고
    • A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress
    • Brandman O., et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 2012, 151:1042-1054.
    • (2012) Cell , vol.151 , pp. 1042-1054
    • Brandman, O.1
  • 56
    • 84871682623 scopus 로고    scopus 로고
    • SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation
    • Xu Y., et al. SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. Cell Rep. 2012, 2:1633-1644.
    • (2012) Cell Rep. , vol.2 , pp. 1633-1644
    • Xu, Y.1
  • 57
    • 79959347089 scopus 로고    scopus 로고
    • A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation
    • Wang Q., et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 2011, 42:758-770.
    • (2011) Mol. Cell , vol.42 , pp. 758-770
    • Wang, Q.1
  • 58
    • 77955878748 scopus 로고    scopus 로고
    • BAG-6 is essential for selective elimination of defective proteasomal substrates
    • Minami R., et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 2010, 190:637-650.
    • (2010) J. Cell Biol. , vol.190 , pp. 637-650
    • Minami, R.1
  • 59
    • 79960637590 scopus 로고    scopus 로고
    • Protein targeting and degradation are coupled for elimination of mislocalized proteins
    • Hessa T., et al. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 2011, 475:394-397.
    • (2011) Nature , vol.475 , pp. 394-397
    • Hessa, T.1
  • 60
    • 0344688165 scopus 로고    scopus 로고
    • Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region
    • Lehner B., et al. Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. Genomics 2004, 83:153-167.
    • (2004) Genomics , vol.83 , pp. 153-167
    • Lehner, B.1
  • 61
    • 51749093587 scopus 로고    scopus 로고
    • Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis
    • Guerrero C., et al. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:13333-13338.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 13333-13338
    • Guerrero, C.1
  • 62
    • 68049084674 scopus 로고    scopus 로고
    • Breaking the chains: structure and function of the deubiquitinases
    • Komander D., et al. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009, 10:550-563.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 550-563
    • Komander, D.1
  • 63
    • 84881150929 scopus 로고    scopus 로고
    • Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER
    • Zhang Z.R., et al. Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER. Cell 2013, 154:609-622.
    • (2013) Cell , vol.154 , pp. 609-622
    • Zhang, Z.R.1
  • 64
    • 84856085129 scopus 로고    scopus 로고
    • Inhibition of proteasome deubiquitinating activity as a new cancer therapy
    • D'Arcy P., et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 2011, 17:1636-1640.
    • (2011) Nat. Med. , vol.17 , pp. 1636-1640
    • D'Arcy, P.1
  • 65
    • 77956527159 scopus 로고    scopus 로고
    • Enhancement of proteasome activity by a small-molecule inhibitor of USP14
    • Lee B.H., et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467:179-184.
    • (2010) Nature , vol.467 , pp. 179-184
    • Lee, B.H.1
  • 66
    • 77957237291 scopus 로고    scopus 로고
    • Identification of aneuploidy-tolerating mutations
    • Torres E.M., et al. Identification of aneuploidy-tolerating mutations. Cell 2010, 143:71-83.
    • (2010) Cell , vol.143 , pp. 71-83
    • Torres, E.M.1
  • 67
    • 3142566639 scopus 로고    scopus 로고
    • Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system
    • Verma R., et al. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 2010, 118:99-110.
    • (2010) Cell , vol.118 , pp. 99-110
    • Verma, R.1
  • 68
    • 3042677641 scopus 로고    scopus 로고
    • Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome
    • Elsasser S., et al. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 2004, 279:26817-26822.
    • (2004) J. Biol. Chem. , vol.279 , pp. 26817-26822
    • Elsasser, S.1
  • 69
    • 44349116590 scopus 로고    scopus 로고
    • Proteasome subunit Rpn13 is a novel ubiquitin receptor
    • Husnjak K., et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453:481-488.
    • (2008) Nature , vol.453 , pp. 481-488
    • Husnjak, K.1
  • 70
    • 0029806477 scopus 로고    scopus 로고
    • The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
    • van Nocker S., et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol. 1996, 16:6020-6028.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 6020-6028
    • van Nocker, S.1
  • 71
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • Yao T., Cohen R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002, 419:403-407.
    • (2002) Nature , vol.419 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 72
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R., et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002, 298:611-615.
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1
  • 73
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander G.C., et al. Complete subunit architecture of the proteasome regulatory particle. Nature 2012, 482:186-191.
    • (2012) Nature , vol.482 , pp. 186-191
    • Lander, G.C.1
  • 74
    • 84866269021 scopus 로고    scopus 로고
    • Near-atomic resolution structural model of the yeast 26S proteasome
    • Beck F., et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14870-14875.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 14870-14875
    • Beck, F.1
  • 75
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela M.E., et al. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 2013, 20:781-788.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 781-788
    • Matyskiela, M.E.1
  • 76
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • Sledz P., et al. Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7264-7269.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7264-7269
    • Sledz, P.1
  • 77
    • 81055149914 scopus 로고    scopus 로고
    • Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma
    • Hideshima T., et al. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol. Cancer Ther. 2011, 10:2034-2042.
    • (2011) Mol. Cancer Ther. , vol.10 , pp. 2034-2042
    • Hideshima, T.1
  • 78
    • 79953197650 scopus 로고    scopus 로고
    • Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease
    • Dammer E.B., et al. Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J. Biol. Chem. 2011, 286:10457-10465.
    • (2011) J. Biol. Chem. , vol.286 , pp. 10457-10465
    • Dammer, E.B.1
  • 79
    • 43049162227 scopus 로고    scopus 로고
    • Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
    • Jin L., et al. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 2008, 133:653-665.
    • (2008) Cell , vol.133 , pp. 653-665
    • Jin, L.1
  • 80
    • 33750530169 scopus 로고    scopus 로고
    • Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains
    • Chastagner P., et al. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep. 2006, 7:1147-1153.
    • (2006) EMBO Rep. , vol.7 , pp. 1147-1153
    • Chastagner, P.1
  • 81
    • 0029119522 scopus 로고
    • A proteolytic pathway that recognizes ubiquitin as a degradation signal
    • Johnson E.S., et al. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 1995, 270:17442-17456.
    • (1995) J. Biol. Chem. , vol.270 , pp. 17442-17456
    • Johnson, E.S.1
  • 82
    • 60549107173 scopus 로고    scopus 로고
    • Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
    • Saeki Y., et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 2009, 28:359-371.
    • (2009) EMBO J. , vol.28 , pp. 359-371
    • Saeki, Y.1
  • 83
    • 84875231510 scopus 로고    scopus 로고
    • Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?
    • Nathan J.A., et al. Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?. EMBO J. 2013, 32:552-565.
    • (2013) EMBO J. , vol.32 , pp. 552-565
    • Nathan, J.A.1
  • 84
    • 72149130935 scopus 로고    scopus 로고
    • The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome
    • Jacobson A.D., et al. The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J. Biol. Chem. 2009, 284:35485-35494.
    • (2009) J. Biol. Chem. , vol.284 , pp. 35485-35494
    • Jacobson, A.D.1
  • 85
    • 0141753130 scopus 로고    scopus 로고
    • A conserved catalytic residue in the ubiquitin-conjugating enzyme family
    • Wu P.Y., et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 2003, 22:5241-5250.
    • (2003) EMBO J. , vol.22 , pp. 5241-5250
    • Wu, P.Y.1
  • 86
    • 84874110594 scopus 로고    scopus 로고
    • A conserved asparagine has a structural role in ubiquitin-conjugating enzymes
    • Berndsen C.E., et al. A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Nat. Chem. Biol. 2013, 9:154-156.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 154-156
    • Berndsen, C.E.1
  • 87
    • 33744911377 scopus 로고    scopus 로고
    • Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway
    • Yunus A.A., Lima C.D. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat. Struct. Mol. Biol. 2006, 13:491-499.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 491-499
    • Yunus, A.A.1    Lima, C.D.2
  • 88
    • 33749506057 scopus 로고    scopus 로고
    • Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation
    • Eddins M.J., et al. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 2006, 13:915-920.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 915-920
    • Eddins, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.