-
2
-
-
63049125531
-
Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
-
Xu P., et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009, 137:133-145.
-
(2009)
Cell
, vol.137
, pp. 133-145
-
-
Xu, P.1
-
3
-
-
59649103156
-
Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation
-
Tokunaga F., et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol. 2009, 11:123-132.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 123-132
-
-
Tokunaga, F.1
-
5
-
-
67349256160
-
Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways
-
Schulman B.A., Harper J.W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 2009, 10:319-331.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 319-331
-
-
Schulman, B.A.1
Harper, J.W.2
-
6
-
-
35148886143
-
Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics
-
Yang Y., et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 2007, 67:9472-9481.
-
(2007)
Cancer Res.
, vol.67
, pp. 9472-9481
-
-
Yang, Y.1
-
7
-
-
33846548206
-
Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity
-
Huang D.T., et al. Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Nature 2007, 445:394-398.
-
(2007)
Nature
, vol.445
, pp. 394-398
-
-
Huang, D.T.1
-
8
-
-
77249138804
-
Active site remodelling accompanies thioester bond formation in the SUMO E1
-
Olsen S.K., et al. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature 2010, 463:906-912.
-
(2010)
Nature
, vol.463
, pp. 906-912
-
-
Olsen, S.K.1
-
9
-
-
84876864015
-
Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer
-
Olsen S.K., Lima C.D. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Mol. Cell 2013, 49:884-896.
-
(2013)
Mol. Cell
, vol.49
, pp. 884-896
-
-
Olsen, S.K.1
Lima, C.D.2
-
10
-
-
0035891318
-
Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex
-
Lake M.W., et al. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 2001, 414:325-329.
-
(2001)
Nature
, vol.414
, pp. 325-329
-
-
Lake, M.W.1
-
11
-
-
47549111312
-
Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes
-
Lee I., Schindelin H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 2008, 134:268-278.
-
(2008)
Cell
, vol.134
, pp. 268-278
-
-
Lee, I.1
Schindelin, H.2
-
12
-
-
14844291338
-
Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1
-
Lois L.M., Lima C.D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 2005, 24:439-451.
-
(2005)
EMBO J.
, vol.24
, pp. 439-451
-
-
Lois, L.M.1
Lima, C.D.2
-
13
-
-
0347416977
-
The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1
-
Walden H., et al. The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell 2003, 12:1427-1437.
-
(2003)
Mol. Cell
, vol.12
, pp. 1427-1437
-
-
Walden, H.1
-
14
-
-
60549091914
-
E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification
-
Huang D.T., et al. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol. Cell 2009, 33:483-495.
-
(2009)
Mol. Cell
, vol.33
, pp. 483-495
-
-
Huang, D.T.1
-
15
-
-
84855254067
-
E1-E2 interactions in ubiquitin and Nedd8 ligation pathways
-
Tokgoz Z., et al. E1-E2 interactions in ubiquitin and Nedd8 ligation pathways. J. Biol. Chem. 2012, 287:311-321.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 311-321
-
-
Tokgoz, Z.1
-
16
-
-
64749098830
-
An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer
-
Soucy T.A., et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009, 458:732-736.
-
(2009)
Nature
, vol.458
, pp. 732-736
-
-
Soucy, T.A.1
-
17
-
-
0033120027
-
ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity
-
Ohta T., et al. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 1999, 3:535-541.
-
(1999)
Mol. Cell
, vol.3
, pp. 535-541
-
-
Ohta, T.1
-
18
-
-
0033120593
-
Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha
-
Tan P., et al. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol. Cell 1999, 3:527-533.
-
(1999)
Mol. Cell
, vol.3
, pp. 527-533
-
-
Tan, P.1
-
19
-
-
84866124869
-
BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer
-
Dou H., et al. BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 2012, 19:876-883.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 876-883
-
-
Dou, H.1
-
20
-
-
84866858702
-
Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases
-
Pruneda J.N., et al. Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 2012, 47:933-942.
-
(2012)
Mol. Cell
, vol.47
, pp. 933-942
-
-
Pruneda, J.N.1
-
21
-
-
84865781586
-
Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis
-
Plechanovova A., et al. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 2012, 489:115-120.
-
(2012)
Nature
, vol.489
, pp. 115-120
-
-
Plechanovova, A.1
-
22
-
-
0034788322
-
Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail
-
Hamilton K.S., et al. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 2001, 9:897-904.
-
(2001)
Structure
, vol.9
, pp. 897-904
-
-
Hamilton, K.S.1
-
23
-
-
79953296212
-
Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate
-
Saha A., et al. Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell 2011, 42:75-83.
-
(2011)
Mol. Cell
, vol.42
, pp. 75-83
-
-
Saha, A.1
-
24
-
-
79952290609
-
The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2
-
Wickliffe K.E., et al. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 2011, 144:769-781.
-
(2011)
Cell
, vol.144
, pp. 769-781
-
-
Wickliffe, K.E.1
-
25
-
-
79952407243
-
Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme approximately ubiquitin conjugate
-
Pruneda J.N., et al. Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme approximately ubiquitin conjugate. Biochemistry 2011, 50:1624-1633.
-
(2011)
Biochemistry
, vol.50
, pp. 1624-1633
-
-
Pruneda, J.N.1
-
26
-
-
84881478295
-
Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3
-
Dou H., et al. Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Nat. Struct. Mol. Biol. 2013, 20:982-986.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 982-986
-
-
Dou, H.1
-
27
-
-
84881518558
-
Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3
-
Kamadurai H.B., et al. Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. eLife 2013, 2:e00828.
-
(2013)
eLife
, vol.2
-
-
Kamadurai, H.B.1
-
28
-
-
72149107116
-
Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex
-
Kamadurai H.B., et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Mol. Cell 2009, 36:1095-1102.
-
(2009)
Mol. Cell
, vol.36
, pp. 1095-1102
-
-
Kamadurai, H.B.1
-
29
-
-
0037249354
-
Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase
-
Verdecia M.A., et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 2003, 11:249-259.
-
(2003)
Mol. Cell
, vol.11
, pp. 249-259
-
-
Verdecia, M.A.1
-
30
-
-
0032741446
-
Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade
-
Huang L., et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 1999, 286:1321-1326.
-
(1999)
Science
, vol.286
, pp. 1321-1326
-
-
Huang, L.1
-
31
-
-
84878900697
-
Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming
-
Maspero E., et al. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat. Struct. Mol. Biol. 2013, 20:696-701.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 696-701
-
-
Maspero, E.1
-
32
-
-
23044505285
-
Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain
-
Ogunjimi A.A., et al. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell 2005, 19:297-308.
-
(2005)
Mol. Cell
, vol.19
, pp. 297-308
-
-
Ogunjimi, A.A.1
-
33
-
-
84879674444
-
Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases
-
Riley B.E., et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 2013, 4:1982.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1982
-
-
Riley, B.E.1
-
34
-
-
84879251778
-
Structure of parkin reveals mechanisms for ubiquitin ligase activation
-
Trempe J.F., et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 2013, 340:1451-1455.
-
(2013)
Science
, vol.340
, pp. 1451-1455
-
-
Trempe, J.F.1
-
35
-
-
79957949190
-
UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
-
Wenzel D.M., et al. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011, 474:105-108.
-
(2011)
Nature
, vol.474
, pp. 105-108
-
-
Wenzel, D.M.1
-
36
-
-
84879980089
-
A molecular explanation for the recessive nature of parkin-linked Parkinson's disease
-
Spratt D.E., et al. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat. Commun. 2013, 4:1983.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1983
-
-
Spratt, D.E.1
-
37
-
-
84878840303
-
Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism
-
Duda D.M., et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 2013, 21:1030-1041.
-
(2013)
Structure
, vol.21
, pp. 1030-1041
-
-
Duda, D.M.1
-
38
-
-
73649095886
-
The acidic tail of the Cdc34 ubiquitin-conjugating enzyme functions in both binding to and catalysis with ubiquitin ligase SCFCdc4
-
Kleiger G., et al. The acidic tail of the Cdc34 ubiquitin-conjugating enzyme functions in both binding to and catalysis with ubiquitin ligase SCFCdc4. J. Biol. Chem. 2009, 284:36012-36023.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 36012-36023
-
-
Kleiger, G.1
-
39
-
-
0030812809
-
Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle
-
Yew P.R., Kirschner M.W. Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle. Science 1997, 277:1672-1676.
-
(1997)
Science
, vol.277
, pp. 1672-1676
-
-
Yew, P.R.1
Kirschner, M.W.2
-
40
-
-
0034602845
-
Recognition of the polyubiquitin proteolytic signal
-
Thrower J.S., et al. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000, 19:94-102.
-
(2000)
EMBO J.
, vol.19
, pp. 94-102
-
-
Thrower, J.S.1
-
41
-
-
0024514688
-
A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein
-
Chau V., et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 1989, 243:1576-1583.
-
(1989)
Science
, vol.243
, pp. 1576-1583
-
-
Chau, V.1
-
42
-
-
71449123070
-
Detection of sequential polyubiquitylation on a millisecond timescale
-
Pierce N.W., et al. Detection of sequential polyubiquitylation on a millisecond timescale. Nature 2009, 462:615-619.
-
(2009)
Nature
, vol.462
, pp. 615-619
-
-
Pierce, N.W.1
-
43
-
-
0020961333
-
Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division
-
Evans T., et al. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 1983, 33:389-396.
-
(1983)
Cell
, vol.33
, pp. 389-396
-
-
Evans, T.1
-
44
-
-
82455179484
-
Systematic and quantitative assessment of the ubiquitin-modified proteome
-
Kim W., et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 2011, 44:325-340.
-
(2011)
Mol. Cell
, vol.44
, pp. 325-340
-
-
Kim, W.1
-
45
-
-
36749080327
-
Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway
-
Mayor T., et al. Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol. Cell. Proteomics 2007, 6:1885-1895.
-
(2007)
Mol. Cell. Proteomics
, vol.6
, pp. 1885-1895
-
-
Mayor, T.1
-
46
-
-
84897086751
-
False start: cotranslational protein ubiquitination and cytosolic protein quality control
-
Comyn S.A., et al. False start: cotranslational protein ubiquitination and cytosolic protein quality control. J. Proteomics 2013, 10.1016/j.jprot.2013.08.005.
-
(2013)
J. Proteomics
-
-
Comyn, S.A.1
-
47
-
-
84870907436
-
Cleaning up: ER-associated degradation to the rescue
-
Brodsky J.L. Cleaning up: ER-associated degradation to the rescue. Cell 2013, 151:1163-1167.
-
(2013)
Cell
, vol.151
, pp. 1163-1167
-
-
Brodsky, J.L.1
-
48
-
-
0034643336
-
Rapid degradation of a large fraction of newly synthesized proteins by proteasomes
-
Schubert U., et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000, 404:770-774.
-
(2000)
Nature
, vol.404
, pp. 770-774
-
-
Schubert, U.1
-
49
-
-
84883229070
-
A cotranslational ubiquitination pathway for quality control of misfolded proteins
-
Wang F., et al. A cotranslational ubiquitination pathway for quality control of misfolded proteins. Mol. Cell 2013, 50:368-378.
-
(2013)
Mol. Cell
, vol.50
, pp. 368-378
-
-
Wang, F.1
-
50
-
-
84883210213
-
Principles of cotranslational ubiquitination and quality control at the ribosome
-
Duttler S., et al. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell 2013, 50:379-393.
-
(2013)
Mol. Cell
, vol.50
, pp. 379-393
-
-
Duttler, S.1
-
51
-
-
0034703437
-
Detecting and measuring cotranslational protein degradation in vivo
-
Turner G.C., Varshavsky A. Detecting and measuring cotranslational protein degradation in vivo. Science 2000, 289:2117-2120.
-
(2000)
Science
, vol.289
, pp. 2117-2120
-
-
Turner, G.C.1
Varshavsky, A.2
-
52
-
-
84865602944
-
Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin
-
Dantuma N.P., Hoppe T. Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin. Trends Cell Biol. 2012, 22:483-491.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 483-491
-
-
Dantuma, N.P.1
Hoppe, T.2
-
53
-
-
84875481864
-
Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products
-
Defenouillere Q., et al. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5046-5051.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 5046-5051
-
-
Defenouillere, Q.1
-
54
-
-
84879034688
-
Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome
-
Verma R., et al. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. eLife 2013, 2:e00308.
-
(2013)
eLife
, vol.2
-
-
Verma, R.1
-
55
-
-
84871523350
-
A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress
-
Brandman O., et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 2012, 151:1042-1054.
-
(2012)
Cell
, vol.151
, pp. 1042-1054
-
-
Brandman, O.1
-
56
-
-
84871682623
-
SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation
-
Xu Y., et al. SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. Cell Rep. 2012, 2:1633-1644.
-
(2012)
Cell Rep.
, vol.2
, pp. 1633-1644
-
-
Xu, Y.1
-
57
-
-
79959347089
-
A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation
-
Wang Q., et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 2011, 42:758-770.
-
(2011)
Mol. Cell
, vol.42
, pp. 758-770
-
-
Wang, Q.1
-
58
-
-
77955878748
-
BAG-6 is essential for selective elimination of defective proteasomal substrates
-
Minami R., et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 2010, 190:637-650.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 637-650
-
-
Minami, R.1
-
59
-
-
79960637590
-
Protein targeting and degradation are coupled for elimination of mislocalized proteins
-
Hessa T., et al. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 2011, 475:394-397.
-
(2011)
Nature
, vol.475
, pp. 394-397
-
-
Hessa, T.1
-
60
-
-
0344688165
-
Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region
-
Lehner B., et al. Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. Genomics 2004, 83:153-167.
-
(2004)
Genomics
, vol.83
, pp. 153-167
-
-
Lehner, B.1
-
61
-
-
51749093587
-
Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis
-
Guerrero C., et al. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:13333-13338.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 13333-13338
-
-
Guerrero, C.1
-
62
-
-
68049084674
-
Breaking the chains: structure and function of the deubiquitinases
-
Komander D., et al. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009, 10:550-563.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 550-563
-
-
Komander, D.1
-
63
-
-
84881150929
-
Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER
-
Zhang Z.R., et al. Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER. Cell 2013, 154:609-622.
-
(2013)
Cell
, vol.154
, pp. 609-622
-
-
Zhang, Z.R.1
-
64
-
-
84856085129
-
Inhibition of proteasome deubiquitinating activity as a new cancer therapy
-
D'Arcy P., et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 2011, 17:1636-1640.
-
(2011)
Nat. Med.
, vol.17
, pp. 1636-1640
-
-
D'Arcy, P.1
-
65
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee B.H., et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467:179-184.
-
(2010)
Nature
, vol.467
, pp. 179-184
-
-
Lee, B.H.1
-
66
-
-
77957237291
-
Identification of aneuploidy-tolerating mutations
-
Torres E.M., et al. Identification of aneuploidy-tolerating mutations. Cell 2010, 143:71-83.
-
(2010)
Cell
, vol.143
, pp. 71-83
-
-
Torres, E.M.1
-
67
-
-
3142566639
-
Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system
-
Verma R., et al. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 2010, 118:99-110.
-
(2010)
Cell
, vol.118
, pp. 99-110
-
-
Verma, R.1
-
68
-
-
3042677641
-
Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome
-
Elsasser S., et al. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 2004, 279:26817-26822.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 26817-26822
-
-
Elsasser, S.1
-
69
-
-
44349116590
-
Proteasome subunit Rpn13 is a novel ubiquitin receptor
-
Husnjak K., et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453:481-488.
-
(2008)
Nature
, vol.453
, pp. 481-488
-
-
Husnjak, K.1
-
70
-
-
0029806477
-
The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
-
van Nocker S., et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol. 1996, 16:6020-6028.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 6020-6028
-
-
van Nocker, S.1
-
71
-
-
0037179694
-
A cryptic protease couples deubiquitination and degradation by the proteasome
-
Yao T., Cohen R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002, 419:403-407.
-
(2002)
Nature
, vol.419
, pp. 403-407
-
-
Yao, T.1
Cohen, R.E.2
-
72
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R., et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002, 298:611-615.
-
(2002)
Science
, vol.298
, pp. 611-615
-
-
Verma, R.1
-
73
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander G.C., et al. Complete subunit architecture of the proteasome regulatory particle. Nature 2012, 482:186-191.
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
-
74
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck F., et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14870-14875.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 14870-14875
-
-
Beck, F.1
-
75
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela M.E., et al. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 2013, 20:781-788.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 781-788
-
-
Matyskiela, M.E.1
-
76
-
-
84876909425
-
Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
Sledz P., et al. Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7264-7269.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 7264-7269
-
-
Sledz, P.1
-
77
-
-
81055149914
-
Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma
-
Hideshima T., et al. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol. Cancer Ther. 2011, 10:2034-2042.
-
(2011)
Mol. Cancer Ther.
, vol.10
, pp. 2034-2042
-
-
Hideshima, T.1
-
78
-
-
79953197650
-
Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease
-
Dammer E.B., et al. Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J. Biol. Chem. 2011, 286:10457-10465.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 10457-10465
-
-
Dammer, E.B.1
-
79
-
-
43049162227
-
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
-
Jin L., et al. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 2008, 133:653-665.
-
(2008)
Cell
, vol.133
, pp. 653-665
-
-
Jin, L.1
-
80
-
-
33750530169
-
Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains
-
Chastagner P., et al. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep. 2006, 7:1147-1153.
-
(2006)
EMBO Rep.
, vol.7
, pp. 1147-1153
-
-
Chastagner, P.1
-
81
-
-
0029119522
-
A proteolytic pathway that recognizes ubiquitin as a degradation signal
-
Johnson E.S., et al. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 1995, 270:17442-17456.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 17442-17456
-
-
Johnson, E.S.1
-
82
-
-
60549107173
-
Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
-
Saeki Y., et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 2009, 28:359-371.
-
(2009)
EMBO J.
, vol.28
, pp. 359-371
-
-
Saeki, Y.1
-
83
-
-
84875231510
-
Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?
-
Nathan J.A., et al. Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?. EMBO J. 2013, 32:552-565.
-
(2013)
EMBO J.
, vol.32
, pp. 552-565
-
-
Nathan, J.A.1
-
84
-
-
72149130935
-
The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome
-
Jacobson A.D., et al. The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J. Biol. Chem. 2009, 284:35485-35494.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 35485-35494
-
-
Jacobson, A.D.1
-
85
-
-
0141753130
-
A conserved catalytic residue in the ubiquitin-conjugating enzyme family
-
Wu P.Y., et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 2003, 22:5241-5250.
-
(2003)
EMBO J.
, vol.22
, pp. 5241-5250
-
-
Wu, P.Y.1
-
86
-
-
84874110594
-
A conserved asparagine has a structural role in ubiquitin-conjugating enzymes
-
Berndsen C.E., et al. A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Nat. Chem. Biol. 2013, 9:154-156.
-
(2013)
Nat. Chem. Biol.
, vol.9
, pp. 154-156
-
-
Berndsen, C.E.1
-
87
-
-
33744911377
-
Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway
-
Yunus A.A., Lima C.D. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat. Struct. Mol. Biol. 2006, 13:491-499.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 491-499
-
-
Yunus, A.A.1
Lima, C.D.2
-
88
-
-
33749506057
-
Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation
-
Eddins M.J., et al. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 2006, 13:915-920.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 915-920
-
-
Eddins, M.J.1
|