메뉴 건너뛰기




Volumn 10, Issue 4, 2014, Pages

DNA Repair Pathway Selection Caused by Defects in TEL1, SAE2, and De Novo Telomere Addition Generates Specific Chromosomal Rearrangement Signatures

Author keywords

[No Author keywords available]

Indexed keywords

SHORT HAIRPIN RNA; ENDONUCLEASE; PROTEIN SERINE THREONINE KINASE; SACCHAROMYCES CEREVISIAE PROTEIN; SAE2 PROTEIN, S CEREVISIAE; SIGNAL PEPTIDE; TEL1 PROTEIN, S CEREVISIAE;

EID: 84901333943     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1004277     Document Type: Article
Times cited : (19)

References (75)
  • 3
    • 0034490072 scopus 로고    scopus 로고
    • The relationship between spontaneous telomere loss and chromosome instability in a human tumor cell line
    • Fouladi B, Sabatier L, Miller D, Pottier G, Murnane JP, (2000) The relationship between spontaneous telomere loss and chromosome instability in a human tumor cell line. Neoplasia 2: 540-554.
    • (2000) Neoplasia , vol.2 , pp. 540-554
    • Fouladi, B.1    Sabatier, L.2    Miller, D.3    Pottier, G.4    Murnane, J.P.5
  • 4
    • 10944236160 scopus 로고    scopus 로고
    • Connecting mitotic instability and chromosome aberrations in cancer-can telomeres bridge the gap?
    • Gisselsson D, Hoglund M, (2005) Connecting mitotic instability and chromosome aberrations in cancer-can telomeres bridge the gap? Semin Cancer Biol 15: 13-23.
    • (2005) Semin Cancer Biol , vol.15 , pp. 13-23
    • Gisselsson, D.1    Hoglund, M.2
  • 5
    • 34547192058 scopus 로고    scopus 로고
    • BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges
    • Chan KL, North PS, Hickson ID, (2007) BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J 26: 3397-3409.
    • (2007) EMBO J , vol.26 , pp. 3397-3409
    • Chan, K.L.1    North, P.S.2    Hickson, I.D.3
  • 6
    • 84865285978 scopus 로고    scopus 로고
    • Landscape of somatic retrotransposition in human cancers
    • Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, et al. (2012) Landscape of somatic retrotransposition in human cancers. Science 337: 967-971.
    • (2012) Science , vol.337 , pp. 967-971
    • Lee, E.1    Iskow, R.2    Yang, L.3    Gokcumen, O.4    Haseley, P.5
  • 7
    • 78049380554 scopus 로고    scopus 로고
    • The patterns and dynamics of genomic instability in metastatic pancreatic cancer
    • Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, et al. (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467: 1109-1113.
    • (2010) Nature , vol.467 , pp. 1109-1113
    • Campbell, P.J.1    Yachida, S.2    Mudie, L.J.3    Stephens, P.J.4    Pleasance, E.D.5
  • 8
    • 84863725818 scopus 로고    scopus 로고
    • Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes
    • McBride DJ, Etemadmoghadam D, Cooke SL, Alsop K, George J, et al. (2012) Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes. J Pathol 227: 446-455.
    • (2012) J Pathol , vol.227 , pp. 446-455
    • McBride, D.J.1    Etemadmoghadam, D.2    Cooke, S.L.3    Alsop, K.4    George, J.5
  • 9
    • 72949119310 scopus 로고    scopus 로고
    • Complex landscapes of somatic rearrangement in human breast cancer genomes
    • Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, et al. (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462: 1005-1010.
    • (2009) Nature , vol.462 , pp. 1005-1010
    • Stephens, P.J.1    McBride, D.J.2    Lin, M.L.3    Varela, I.4    Pleasance, E.D.5
  • 10
    • 79959838081 scopus 로고    scopus 로고
    • Integrated genomic analyses of ovarian carcinoma
    • The Cancer Genome Atlas
    • The Cancer Genome Atlas (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474: 609-615.
    • (2011) Nature , vol.474 , pp. 609-615
  • 11
    • 0032860479 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    • Chen C, Kolodner RD, (1999) Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23: 81-85.
    • (1999) Nat Genet , vol.23 , pp. 81-85
    • Chen, C.1    Kolodner, R.D.2
  • 12
    • 0035839132 scopus 로고    scopus 로고
    • Telomere dysfunction increases mutation rate and genomic instability
    • Hackett JA, Feldser DM, Greider CW, (2001) Telomere dysfunction increases mutation rate and genomic instability. Cell 106: 275-286.
    • (2001) Cell , vol.106 , pp. 275-286
    • Hackett, J.A.1    Feldser, D.M.2    Greider, C.W.3
  • 13
    • 34548450396 scopus 로고    scopus 로고
    • A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions
    • Kanellis P, Gagliardi M, Banath JP, Szilard RK, Nakada S, et al. (2007) A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions. PLoS Genet 3: e134.
    • (2007) PLoS Genet , vol.3
    • Kanellis, P.1    Gagliardi, M.2    Banath, J.P.3    Szilard, R.K.4    Nakada, S.5
  • 14
    • 69249231999 scopus 로고    scopus 로고
    • Specific pathways prevent duplication-mediated genome rearrangements
    • Putnam CD, Hayes TK, Kolodner RD, (2009) Specific pathways prevent duplication-mediated genome rearrangements. Nature 460: 984-989.
    • (2009) Nature , vol.460 , pp. 984-989
    • Putnam, C.D.1    Hayes, T.K.2    Kolodner, R.D.3
  • 15
    • 79958013665 scopus 로고    scopus 로고
    • A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements
    • Chan JE, Kolodner RD, (2011) A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements. PLoS Genet 7: e1002089.
    • (2011) PLoS Genet , vol.7
    • Chan, J.E.1    Kolodner, R.D.2
  • 16
    • 0035963338 scopus 로고    scopus 로고
    • Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
    • Myung K, Chen C, Kolodner RD, (2001) Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411: 1073-1076.
    • (2001) Nature , vol.411 , pp. 1073-1076
    • Myung, K.1    Chen, C.2    Kolodner, R.D.3
  • 17
    • 4444293120 scopus 로고    scopus 로고
    • Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae
    • Putnam CD, Pennaneach V, Kolodner RD, (2004) Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101: 13262-13267.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 13262-13267
    • Putnam, C.D.1    Pennaneach, V.2    Kolodner, R.D.3
  • 18
    • 23344449102 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype
    • Putnam CD, Pennaneach V, Kolodner RD, (2005) Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype. Mol Cell Biol 25: 7226-7238.
    • (2005) Mol Cell Biol , vol.25 , pp. 7226-7238
    • Putnam, C.D.1    Pennaneach, V.2    Kolodner, R.D.3
  • 19
    • 2642516988 scopus 로고    scopus 로고
    • Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast
    • Pennaneach V, Kolodner RD, (2004) Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast. Nat Genet 36: 612-617.
    • (2004) Nat Genet , vol.36 , pp. 612-617
    • Pennaneach, V.1    Kolodner, R.D.2
  • 20
    • 68149165451 scopus 로고    scopus 로고
    • Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in S. cerevisiae
    • Pennaneach V, Kolodner RD, (2009) Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in S. cerevisiae. PLoS One 4: e6389.
    • (2009) PLoS One , vol.4
    • Pennaneach, V.1    Kolodner, R.D.2
  • 21
    • 77953208583 scopus 로고    scopus 로고
    • Post-replication repair suppresses duplication-mediated genome instability
    • Putnam CD, Hayes TK, Kolodner RD, (2010) Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet 6: e1000933.
    • (2010) PLoS Genet , vol.6
    • Putnam, C.D.1    Hayes, T.K.2    Kolodner, R.D.3
  • 22
    • 0035830498 scopus 로고    scopus 로고
    • Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
    • Myung K, Datta A, Kolodner RD, (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104: 397-408.
    • (2001) Cell , vol.104 , pp. 397-408
    • Myung, K.1    Datta, A.2    Kolodner, R.D.3
  • 23
    • 0037716757 scopus 로고    scopus 로고
    • Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining
    • Chan SW, Blackburn EH, (2003) Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. Mol Cell 11: 1379-1387.
    • (2003) Mol Cell , vol.11 , pp. 1379-1387
    • Chan, S.W.1    Blackburn, E.H.2
  • 24
    • 0036021349 scopus 로고    scopus 로고
    • A quantitative assay for telomere protection in Saccharomyces cerevisiae
    • DuBois ML, Haimberger ZW, McIntosh MW, Gottschling DE, (2002) A quantitative assay for telomere protection in Saccharomyces cerevisiae. Genetics 161: 995-1013.
    • (2002) Genetics , vol.161 , pp. 995-1013
    • DuBois, M.L.1    Haimberger, Z.W.2    McIntosh, M.W.3    Gottschling, D.E.4
  • 25
    • 0032793298 scopus 로고    scopus 로고
    • Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae
    • Ritchie KB, Mallory JC, Petes TD, (1999) Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol Cell Biol 19: 6065-6075.
    • (1999) Mol Cell Biol , vol.19 , pp. 6065-6075
    • Ritchie, K.B.1    Mallory, J.C.2    Petes, T.D.3
  • 26
    • 33745209199 scopus 로고    scopus 로고
    • Analysis of gross-chromosomal rearrangements in Saccharomyces cerevisiae
    • Schmidt KH, Pennaneach V, Putnam CD, Kolodner RD, (2006) Analysis of gross-chromosomal rearrangements in Saccharomyces cerevisiae. Methods Enzymol 409: 462-476.
    • (2006) Methods Enzymol , vol.409 , pp. 462-476
    • Schmidt, K.H.1    Pennaneach, V.2    Putnam, C.D.3    Kolodner, R.D.4
  • 27
    • 3543023204 scopus 로고    scopus 로고
    • Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification
    • Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, et al. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30: e57.
    • (2002) Nucleic Acids Res , vol.30
    • Schouten, J.P.1    McElgunn, C.J.2    Waaijer, R.3    Zwijnenburg, D.4    Diepvens, F.5
  • 28
    • 84859249636 scopus 로고    scopus 로고
    • Rapid analysis of Saccharomyces cerevisiae genome rearrangements by multiplex ligation-dependent probe amplification
    • Chan JE, Kolodner RD, (2012) Rapid analysis of Saccharomyces cerevisiae genome rearrangements by multiplex ligation-dependent probe amplification. PLoS Genet 8: e1002539.
    • (2012) PLoS Genet , vol.8
    • Chan, J.E.1    Kolodner, R.D.2
  • 29
    • 7944231563 scopus 로고    scopus 로고
    • Non-homologous end-joining factors of Saccharomyces cerevisiae
    • Dudasova Z, Dudas A, Chovanec M, (2004) Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 28: 581-601.
    • (2004) FEMS Microbiol Rev , vol.28 , pp. 581-601
    • Dudasova, Z.1    Dudas, A.2    Chovanec, M.3
  • 30
    • 33745474120 scopus 로고    scopus 로고
    • Break-induced replication and recombinational telomere elongation in yeast
    • McEachern MJ, Haber JE, (2006) Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75: 111-135.
    • (2006) Annu Rev Biochem , vol.75 , pp. 111-135
    • McEachern, M.J.1    Haber, J.E.2
  • 31
    • 0034177982 scopus 로고    scopus 로고
    • Links between replication, recombination and genome instability in eukaryotes
    • Flores-Rozas H, Kolodner RD, (2000) Links between replication, recombination and genome instability in eukaryotes. Trends Biochem Sci 25: 196-200.
    • (2000) Trends Biochem Sci , vol.25 , pp. 196-200
    • Flores-Rozas, H.1    Kolodner, R.D.2
  • 32
    • 36248942617 scopus 로고    scopus 로고
    • Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex
    • Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT, (2007) Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell 28: 638-651.
    • (2007) Mol Cell , vol.28 , pp. 638-651
    • Lengsfeld, B.M.1    Rattray, A.J.2    Bhaskara, V.3    Ghirlando, R.4    Paull, T.T.5
  • 33
    • 0037169325 scopus 로고    scopus 로고
    • The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements
    • Lobachev KS, Gordenin DA, Resnick MA, (2002) The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108: 183-193.
    • (2002) Cell , vol.108 , pp. 183-193
    • Lobachev, K.S.1    Gordenin, D.A.2    Resnick, M.A.3
  • 34
    • 22344455087 scopus 로고    scopus 로고
    • A mechanism of palindromic gene amplification in Saccharomyces cerevisiae
    • Rattray AJ, Shafer BK, Neelam B, Strathern JN, (2005) A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev 19: 1390-1399.
    • (2005) Genes Dev , vol.19 , pp. 1390-1399
    • Rattray, A.J.1    Shafer, B.K.2    Neelam, B.3    Strathern, J.N.4
  • 35
    • 2942594756 scopus 로고    scopus 로고
    • The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation
    • Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G, Longhese MP, (2004) The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol Cell Biol 24: 4151-4165.
    • (2004) Mol Cell Biol , vol.24 , pp. 4151-4165
    • Baroni, E.1    Viscardi, V.2    Cartagena-Lirola, H.3    Lucchini, G.4    Longhese, M.P.5
  • 36
    • 33645799075 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling
    • Clerici M, Mantiero D, Lucchini G, Longhese MP, (2006) The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep 7: 212-218.
    • (2006) EMBO Rep , vol.7 , pp. 212-218
    • Clerici, M.1    Mantiero, D.2    Lucchini, G.3    Longhese, M.P.4
  • 37
    • 33746225419 scopus 로고    scopus 로고
    • Budding Yeast Sae2 is an In Vivo Target of the Mec1 and Tel1 Checkpoint Kinases During Meiosis
    • Cartagena-Lirola H, Guerini I, Viscardi V, Lucchini G, Longhese MP, (2006) Budding Yeast Sae2 is an In Vivo Target of the Mec1 and Tel1 Checkpoint Kinases During Meiosis. Cell Cycle 5: 1549-1559.
    • (2006) Cell Cycle , vol.5 , pp. 1549-1559
    • Cartagena-Lirola, H.1    Guerini, I.2    Viscardi, V.3    Lucchini, G.4    Longhese, M.P.5
  • 38
  • 39
    • 0041660970 scopus 로고    scopus 로고
    • ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism
    • Nakada D, Matsumoto K, Sugimoto K, (2003) ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 17: 1957-1962.
    • (2003) Genes Dev , vol.17 , pp. 1957-1962
    • Nakada, D.1    Matsumoto, K.2    Sugimoto, K.3
  • 40
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington LS, Gautier J, (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247-271.
    • (2011) Annu Rev Genet , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 41
    • 16244368497 scopus 로고    scopus 로고
    • Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae
    • Smith S, Gupta A, Kolodner RD, Myung K, (2005) Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae. DNA Repair (Amst) 4: 606-617.
    • (2005) DNA Repair (Amst) , vol.4 , pp. 606-617
    • Smith, S.1    Gupta, A.2    Kolodner, R.D.3    Myung, K.4
  • 42
    • 67349167663 scopus 로고    scopus 로고
    • The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress
    • Tittel-Elmer M, Alabert C, Pasero P, Cobb JA, (2009) The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO J 28: 1142-1156.
    • (2009) EMBO J , vol.28 , pp. 1142-1156
    • Tittel-Elmer, M.1    Alabert, C.2    Pasero, P.3    Cobb, J.A.4
  • 43
    • 4544281398 scopus 로고    scopus 로고
    • Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
    • Lisby M, Barlow JH, Burgess RC, Rothstein R, (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699-713.
    • (2004) Cell , vol.118 , pp. 699-713
    • Lisby, M.1    Barlow, J.H.2    Burgess, R.C.3    Rothstein, R.4
  • 44
    • 0030885998 scopus 로고    scopus 로고
    • mre11S-a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis
    • Nairz K, Klein F, (1997) mre11S-a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev 11: 2272-2290.
    • (1997) Genes Dev , vol.11 , pp. 2272-2290
    • Nairz, K.1    Klein, F.2
  • 45
    • 0031664401 scopus 로고    scopus 로고
    • Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11
    • Bressan DA, Olivares HA, Nelms BE, Petrini JH, (1998) Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. Genetics 150: 591-600.
    • (1998) Genetics , vol.150 , pp. 591-600
    • Bressan, D.A.1    Olivares, H.A.2    Nelms, B.E.3    Petrini, J.H.4
  • 46
    • 0032931844 scopus 로고    scopus 로고
    • The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance
    • Moreau S, Ferguson JR, Symington LS, (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 19: 556-566.
    • (1999) Mol Cell Biol , vol.19 , pp. 556-566
    • Moreau, S.1    Ferguson, J.R.2    Symington, L.S.3
  • 47
    • 53649090109 scopus 로고    scopus 로고
    • DNA helicases Sgs1 and BLM promote DNA double-strand break resection
    • Gravel S, Chapman JR, Magill C, Jackson SP, (2008) DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 22: 2767-2772.
    • (2008) Genes Dev , vol.22 , pp. 2767-2772
    • Gravel, S.1    Chapman, J.R.2    Magill, C.3    Jackson, S.P.4
  • 48
    • 53649104599 scopus 로고    scopus 로고
    • Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
    • Mimitou EP, Symington LS, (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770-774.
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 49
    • 51549095956 scopus 로고    scopus 로고
    • Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
    • Zhu Z, Chung WH, Shim EY, Lee SE, Ira G, (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134: 981-994.
    • (2008) Cell , vol.134 , pp. 981-994
    • Zhu, Z.1    Chung, W.H.2    Shim, E.Y.3    Lee, S.E.4    Ira, G.5
  • 50
    • 77957805302 scopus 로고    scopus 로고
    • Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2
    • Mimitou EP, Symington LS, (2010) Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J 29: 3358-3369.
    • (2010) EMBO J , vol.29 , pp. 3358-3369
    • Mimitou, E.P.1    Symington, L.S.2
  • 51
    • 77953219442 scopus 로고    scopus 로고
    • Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends
    • Lydeard JR, Lipkin-Moore Z, Jain S, Eapen VV, Haber JE, (2010) Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends. PLoS Genet 6: e1000973.
    • (2010) PLoS Genet , vol.6
    • Lydeard, J.R.1    Lipkin-Moore, Z.2    Jain, S.3    Eapen, V.V.4    Haber, J.E.5
  • 52
    • 0029150855 scopus 로고
    • TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1
    • Morrow DM, Tagle DA, Shiloh Y, Collins FS, Hieter P, (1995) TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82: 831-840.
    • (1995) Cell , vol.82 , pp. 831-840
    • Morrow, D.M.1    Tagle, D.A.2    Shiloh, Y.3    Collins, F.S.4    Hieter, P.5
  • 53
    • 0030593033 scopus 로고    scopus 로고
    • Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways
    • Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, et al. (1996) Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271: 357-360.
    • (1996) Science , vol.271 , pp. 357-360
    • Sanchez, Y.1    Desany, B.A.2    Jones, W.J.3    Liu, Q.4    Wang, B.5
  • 54
    • 0034964498 scopus 로고    scopus 로고
    • A DNA damage response pathway controlled by Tel1 and the Mre11 complex
    • Usui T, Ogawa H, Petrini JH, (2001) A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 7: 1255-1266.
    • (2001) Mol Cell , vol.7 , pp. 1255-1266
    • Usui, T.1    Ogawa, H.2    Petrini, J.H.3
  • 55
    • 0000393532 scopus 로고
    • Identification of yeast mutants with altered telomere structure
    • Lustig AJ, Petes TD, (1986) Identification of yeast mutants with altered telomere structure. Proc Natl Acad Sci U S A 83: 1398-1402.
    • (1986) Proc Natl Acad Sci U S A , vol.83 , pp. 1398-1402
    • Lustig, A.J.1    Petes, T.D.2
  • 56
    • 33645093716 scopus 로고    scopus 로고
    • Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae
    • Pennaneach V, Putnam CD, Kolodner RD, (2006) Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae. Mol Microbiol 59: 1357-1368.
    • (2006) Mol Microbiol , vol.59 , pp. 1357-1368
    • Pennaneach, V.1    Putnam, C.D.2    Kolodner, R.D.3
  • 57
    • 77649116452 scopus 로고    scopus 로고
    • De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks
    • Zhang W, Durocher D, (2010) De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks. Genes Dev 24: 502-515.
    • (2010) Genes Dev , vol.24 , pp. 502-515
    • Zhang, W.1    Durocher, D.2
  • 58
    • 0028178792 scopus 로고
    • The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation
    • Schulz VP, Zakian VA, (1994) The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76: 145-155.
    • (1994) Cell , vol.76 , pp. 145-155
    • Schulz, V.P.1    Zakian, V.A.2
  • 59
    • 27744445335 scopus 로고    scopus 로고
    • The yeast Pif1p helicase removes telomerase from telomeric DNA
    • Boule JB, Vega LR, Zakian VA, (2005) The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438: 57-61.
    • (2005) Nature , vol.438 , pp. 57-61
    • Boule, J.B.1    Vega, L.R.2    Zakian, V.A.3
  • 60
    • 0034604503 scopus 로고    scopus 로고
    • Pif1p helicase, a catalytic inhibitor of telomerase in yeast
    • Zhou J, Monson EK, Teng SC, Schulz VP, Zakian VA, (2000) Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289: 771-774.
    • (2000) Science , vol.289 , pp. 771-774
    • Zhou, J.1    Monson, E.K.2    Teng, S.C.3    Schulz, V.P.4    Zakian, V.A.5
  • 61
    • 72849150228 scopus 로고    scopus 로고
    • Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism
    • Mizuno K, Lambert S, Baldacci G, Murray JM, Carr AM, (2009) Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism. Genes Dev 23: 2876-2886.
    • (2009) Genes Dev , vol.23 , pp. 2876-2886
    • Mizuno, K.1    Lambert, S.2    Baldacci, G.3    Murray, J.M.4    Carr, A.M.5
  • 62
    • 72849116104 scopus 로고    scopus 로고
    • Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast
    • Paek AL, Kaochar S, Jones H, Elezaby A, Shanks L, et al. (2009) Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast. Genes Dev 23: 2861-2875.
    • (2009) Genes Dev , vol.23 , pp. 2861-2875
    • Paek, A.L.1    Kaochar, S.2    Jones, H.3    Elezaby, A.4    Shanks, L.5
  • 63
    • 0001294157 scopus 로고
    • The Stability of Broken Ends of Chromosomes in Zea Mays
    • McClintock B, (1941) The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26: 234-282.
    • (1941) Genetics , vol.26 , pp. 234-282
    • McClintock, B.1
  • 64
    • 33745872612 scopus 로고    scopus 로고
    • Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein
    • Schmidt KH, Wu J, Kolodner RD, (2006) Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein. Mol Cell Biol 26: 5406-5420.
    • (2006) Mol Cell Biol , vol.26 , pp. 5406-5420
    • Schmidt, K.H.1    Wu, J.2    Kolodner, R.D.3
  • 65
    • 34247611513 scopus 로고    scopus 로고
    • Template switching during break-induced replication
    • Smith CE, Llorente B, Symington LS, (2007) Template switching during break-induced replication. Nature 447: 102-105.
    • (2007) Nature , vol.447 , pp. 102-105
    • Smith, C.E.1    Llorente, B.2    Symington, L.S.3
  • 66
    • 0035022013 scopus 로고    scopus 로고
    • Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1
    • Rattray AJ, McGill CB, Shafer BK, Strathern JN, (2001) Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158: 109-122.
    • (2001) Genetics , vol.158 , pp. 109-122
    • Rattray, A.J.1    McGill, C.B.2    Shafer, B.K.3    Strathern, J.N.4
  • 67
    • 34548401682 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining
    • Lee K, Lee SE, (2007) Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 176: 2003-2014.
    • (2007) Genetics , vol.176 , pp. 2003-2014
    • Lee, K.1    Lee, S.E.2
  • 68
    • 0035131699 scopus 로고    scopus 로고
    • Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events
    • Chen Q, Ijpma A, Greider CW, (2001) Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol 21: 1819-1827.
    • (2001) Mol Cell Biol , vol.21 , pp. 1819-1827
    • Chen, Q.1    Ijpma, A.2    Greider, C.W.3
  • 69
    • 84865105439 scopus 로고    scopus 로고
    • Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end
    • Wellinger RJ, Zakian VA, (2012) Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191: 1073-1105.
    • (2012) Genetics , vol.191 , pp. 1073-1105
    • Wellinger, R.J.1    Zakian, V.A.2
  • 70
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski RS, Hieter P, (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 71
  • 73
    • 0025975310 scopus 로고
    • Positional mapping of genes by chromosome blotting and chromosome fragmentation
    • Gerring SL, Connelly C, Hieter P, (1991) Positional mapping of genes by chromosome blotting and chromosome fragmentation. Methods Enzymol 194: 57-77.
    • (1991) Methods Enzymol , vol.194 , pp. 57-77
    • Gerring, S.L.1    Connelly, C.2    Hieter, P.3
  • 74
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, Salzberg SL, (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
    • (2009) Genome Biol , vol.10
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 75
    • 84878183628 scopus 로고    scopus 로고
    • RPA coordinates DNA end resection and prevents formation of DNA hairpins
    • Chen H, Lisby M, Symington LS, (2013) RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50: 589-600.
    • (2013) Mol Cell , vol.50 , pp. 589-600
    • Chen, H.1    Lisby, M.2    Symington, L.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.