메뉴 건너뛰기




Volumn 7, Issue 4, 2014, Pages 1023-1035

A two-stage feature selection framework for hyperspectral image classification using few labeled samples

Author keywords

feature extraction; feature selection; Hyperspectral image classification

Indexed keywords

CLUSTERING ALGORITHMS; FACE RECOGNITION; FEATURE EXTRACTION; SPECTROSCOPY;

EID: 84899795478     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2282161     Document Type: Article
Times cited : (45)

References (54)
  • 2
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • DOI 10.1080/01431160600746456, PII 773345198
    • D. Lu and Q. Weng, "A survey of image classification methods and techniques for improving classification performance," Int. J. Remote Sens., vol. 28, no. 5, pp. 823-870, Jan. 2007. (Pubitemid 46476334)
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 5
    • 84877920421 scopus 로고    scopus 로고
    • Spectral derivative features for classification of hyperspectral remote sensing images: Experimental evaluation
    • J. Bao,M. Chi, and J.A. Benediktsson, "Spectral derivative features for classification of hyperspectral remote sensing images: Experimental evaluation," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 594-601, 2013.
    • (2013) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 594-601
    • Bao, J.1    Chi, M.2    Benediktsson, J.A.3
  • 6
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 7
    • 84861338885 scopus 로고    scopus 로고
    • A fast and robust sparse approach for hyperspectral data classification using a few labeled samples
    • Q. S. ul Haq, L. Tao, F. Sun, and S. Yang, "A fast and robust sparse approach for hyperspectral data classification using a few labeled samples," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2287-2302, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.6 , pp. 2287-2302
    • Ul Haq, Q.S.1    Tao, L.2    Sun, F.3    Yang, S.4
  • 8
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, 2002. (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 9
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • F. Ratle, G. Camps-Valls, and J. Weston, "Semisupervised neural networks for efficient hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271-2282, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 10
    • 79953094686 scopus 로고    scopus 로고
    • Urban image classification with semisupervised multiscale cluster kernels
    • D. Tuia and G. Camps-Valls, "Urban image classification with semisupervised multiscale cluster kernels," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 4, no. 1, pp. 65-74, 2011.
    • (2011) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.4 , Issue.1 , pp. 65-74
    • Tuia, D.1    Camps-Valls, G.2
  • 11
    • 84867060971 scopus 로고    scopus 로고
    • Semisupervised classification of remote sensing images with active queries
    • J. Munoz-Mari, D. Tuia, and G. Camps-Valls, "Semisupervised classification of remote sensing images with active queries," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3751-3763, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.10 , pp. 3751-3763
    • Munoz-Mari, J.1    Tuia, D.2    Camps-Valls, G.3
  • 12
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 13
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral- spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 15
    • 77953710563 scopus 로고    scopus 로고
    • Learning conditional random fields for classification of hyperspectral images
    • P. Zhong and R. Wang, "Learning conditional random fields for classification of hyperspectral images," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2
  • 16
    • 80052335044 scopus 로고    scopus 로고
    • Adaptive Markov random field approach for classification of hyperspectral imagery
    • B. Zhang, S. Li, X. Jia, L. Gao, and M. Peng, "Adaptive Markov random field approach for classification of hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 973-977, 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.5 , pp. 973-977
    • Zhang, B.1    Li, S.2    Jia, X.3    Gao, L.4    Peng, M.5
  • 17
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 18
    • 84875713130 scopus 로고    scopus 로고
    • Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features
    • Y. Qian,M. Ye, and J. Zhou, "Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2276-2291, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.4 , pp. 2276-2291
    • Qian, Y.1    Ye, M.2    Zhou, J.3
  • 19
    • 77956058584 scopus 로고    scopus 로고
    • Hyperspectral region classification using a three-dimensional Gabor filterbank
    • T. C. Bau, S. Sarkar, and G. Healey, "Hyperspectral region classification using a three-dimensional Gabor filterbank," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 9, pp. 3457-3464, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.9 , pp. 3457-3464
    • Bau, T.C.1    Sarkar, S.2    Healey, G.3
  • 20
    • 82155181590 scopus 로고    scopus 로고
    • Three-dimensional gabor wavelets for pixel-based hyperspectral imagery classification
    • L. Shen and S. Jia, "Three-dimensional gabor wavelets for pixel-based hyperspectral imagery classification," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 5039-5046, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 5039-5046
    • Shen, L.1    Jia, S.2
  • 21
    • 84866291195 scopus 로고    scopus 로고
    • Discriminative gabor feature selection for hyperspectral image classification
    • L. Shen, Z. Zhu, S. Jia, J. Zhu, and Y. Sun, "Discriminative gabor feature selection for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 1, pp. 29-33, 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.1 , pp. 29-33
    • Shen, L.1    Zhu, Z.2    Jia, S.3    Zhu, J.4    Sun, Y.5
  • 22
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • DOI 10.1126/science.1136800
    • J. F. Frey and D. Dueck, "Clustering by passing messages between data points," Science, vol. 315, pp. 972-976, Feb. 2007. (Pubitemid 46281181)
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 24
    • 72149111677 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery using affinity propagation
    • Y. Qian, F. Yao, and S. Jia, "Band selection for hyperspectral imagery using affinity propagation," IET Computer Vision, vol. 3, no. 4, pp. 213-222, 2009.
    • (2009) IET Computer Vision , vol.3 , Issue.4 , pp. 213-222
    • Qian, Y.1    Yao, F.2    Jia, S.3
  • 27
    • 84861725237 scopus 로고    scopus 로고
    • A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification
    • I. Dópido, A. Villa, A. Plaza, and P. Gamba, "A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 421-435, 2012.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 421-435
    • Dópido, I.1    Villa, A.2    Plaza, A.3    Gamba, P.4
  • 29
    • 84861732021 scopus 로고    scopus 로고
    • Compression of hyperspectral images using discerete wavelet transform and tucker decomposition
    • A. Karami, M. Yazdi, and G. Mercier, "Compression of hyperspectral images using discerete wavelet transform and tucker decomposition," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 444-450, 2012.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 444-450
    • Karami, A.1    Yazdi, M.2    Mercier, G.3
  • 30
    • 84877926149 scopus 로고    scopus 로고
    • Neighborhood preserving orthogonal pnmf feature extraction for hyperspectral image classification
    • J.Wen, Z. Tian, X. Liu, and W. Lin, "Neighborhood preserving orthogonal pnmf feature extraction for hyperspectral image classification," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 759-768, 2013.
    • (2013) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 759-768
    • Wen, J.1    Tian, Z.2    Liu, X.3    Lin, W.4
  • 31
    • 35348920168 scopus 로고    scopus 로고
    • Feature selection and classification of hyperspectral images with support vector machines
    • DOI 10.1109/LGRS.2007.905116
    • R. Archibald and G. Fann, "Feature selection and classification of hyperspectral images with support vector machines," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 674-677, Oct. 2007. (Pubitemid 47588053)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 674-677
    • Archibald, R.1    Fann, G.2
  • 32
    • 78650930212 scopus 로고    scopus 로고
    • An efficient method for supervised hyperspectral band selection
    • H. Yang, Q. Du, H. Su, and Y. Sheng, "An efficient method for supervised hyperspectral band selection," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 138-142, 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 138-142
    • Yang, H.1    Du, Q.2    Su, H.3    Sheng, Y.4
  • 33
    • 84861735806 scopus 로고    scopus 로고
    • Unsupervised band selection for hyperspectral imagery classification without manual band removal
    • S. Jia, Z. Ji, Y. Qian, and L. Shen, "Unsupervised band selection for hyperspectral imagery classification without manual band removal," IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 531-543, 2012.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 531-543
    • Jia, S.1    Ji, Z.2    Qian, Y.3    Shen, L.4
  • 34
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • DOI 10.1109/TGRS.2006.864389
    • C.-I. Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575-1585, June 2006. (Pubitemid 43824504)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 35
    • 0033224770 scopus 로고    scopus 로고
    • Joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
    • DOI 10.1109/36.803411
    • C.-I. Chang, Q. Du, T. L. Sun, and M. L. G. Althouse, "A joint band prioritization and band-deccorelation approach to band selection for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2631-2641, Nov. 1999. (Pubitemid 30519596)
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1    Du, Q.2    Sun, T.-L.3    Althouse, M.L.G.4
  • 36
    • 33750590333 scopus 로고    scopus 로고
    • Band selection for hyperspectral image classification using mutual information
    • DOI 10.1109/LGRS.2006.878240, 1715309
    • B. Guo, S. R. Gunn, R. I. Damper, and J. D. B. Nelson, "Band selection for hyperspectral image classification usingmutual information," IEEE Geosci. Remote Sens. Lett., vol. 3, no. 4, pp. 522-526, 2006. (Pubitemid 44679664)
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.4 , pp. 522-526
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 40
    • 85032751127 scopus 로고    scopus 로고
    • Mean squared error: Love it or leave it? A new look at signal fidelity measures
    • Z. Wang and A. C. Bovik, "Mean squared error: Love it or leave it? A new look at signal fidelity measures," IEEE Signal Process. Mag., vol. 26, no. 1, pp. 98-117, 2009.
    • (2009) IEEE Signal Process. Mag. , vol.26 , Issue.1 , pp. 98-117
    • Wang, Z.1    Bovik, A.C.2
  • 42
    • 84861148500 scopus 로고    scopus 로고
    • Feature band selection for onlinemultispectral palmprint recognition
    • June
    • Z. Guo, D. Zhang, L. Zhang, and W. Liu, "Feature band selection for onlinemultispectral palmprint recognition," IEEE Trans. Inf. Forensics Security, vol. 7, no. 3, pp. 1094-1099, June 2012.
    • (2012) IEEE Trans. Inf. Forensics Security , vol.7 , Issue.3 , pp. 1094-1099
    • Guo, Z.1    Zhang, D.2    Zhang, L.3    Liu, W.4
  • 43
    • 0034291204 scopus 로고    scopus 로고
    • A parametric texturemodel based on joint statistics of complex wavelet coefficients
    • J. Portilla, "A parametric texturemodel based on joint statistics of complex wavelet coefficients," International Journal of Computer Vision, vol. 40, no. 1, pp. 49-70, 2000.
    • (2000) International Journal of Computer Vision , vol.40 , Issue.1 , pp. 49-70
    • Portilla, J.1
  • 46
    • 0018026724 scopus 로고
    • Search of a general picture processing operator
    • G. Granlund, "In search of a general picture processing operator," Computer Graphics and Image Processing, vol. 8, no. 2, pp. 155-173, 1978. (Pubitemid 9397901)
    • (1978) Comput Graphics Image Process , vol.8 , Issue.2 , pp. 155-173
    • Granlund Goesta, H.1
  • 47
    • 0030410515 scopus 로고    scopus 로고
    • Efficient Gabor filter design for texture segmentation
    • DOI 10.1016/S0031-3203(96)00047-7, PII S0031320396000477
    • T. P. Weldon, W. E. Higgins, and D. F. Dunn, "Efficient Gabor filter design for texture segmentation," Pattern Recognition, vol. 29, pp. 2005-2015, 1996. (Pubitemid 126394632)
    • (1996) Pattern Recognition , vol.29 , Issue.12 , pp. 2005-2015
    • Weldon, T.P.1    Higgins, W.E.2    Dunn, D.F.3
  • 48
    • 0026398342 scopus 로고
    • Unsupervised texture segmentation using Gabor filters
    • A. K. Jain and F. Farrokhnia, "Unsupervised texture segmentation using Gabor filters," Pattern Recognition, vol. 24, pp. 1167-1186, 1991.
    • (1991) Pattern Recognition , vol.24 , pp. 1167-1186
    • Jain, A.K.1    Farrokhnia, F.2
  • 49
    • 84863249076 scopus 로고    scopus 로고
    • Embedded palmprint recognition system using omap 3530
    • L. Shen, S. Wu, S. Zheng, and Z. Ji, "Embedded palmprint recognition system using omap 3530," Sensors, vol. 12, no. 2, pp. 1482-1493, 2012.
    • (2012) Sensors , vol.12 , Issue.2 , pp. 1482-1493
    • Shen, L.1    Wu, S.2    Zheng, S.3    Ji, Z.4
  • 50
    • 33749335686 scopus 로고    scopus 로고
    • A review on Gabor wavelets for face recognition
    • DOI 10.1007/s10044-006-0033-y
    • L. Shen and L. Bai, "A review on Gabor wavelets for face recognition," Pattern Analysis and Applications, vol. 9, pp. 273-292, 2006. (Pubitemid 44494997)
    • (2006) Pattern Analysis and Applications , vol.9 , Issue.2-3 , pp. 273-292
    • Shen, L.1    Bai, L.2
  • 51
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • C. E. Shannon, "A mathematical theory of communication," Bell Systems Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.
    • (1948) Bell Systems Technical Journal , vol.27 , Issue.3 , pp. 379-423
    • Shannon, C.E.1
  • 52
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," Journal of Machine Learning Research, vol. 5, pp. 1205-1224, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 54
    • 80555129673 scopus 로고    scopus 로고
    • Structured variable selection with sparsity-inducing norms
    • Feb.
    • R. Jenatton, J. Audibert, and F. Bach, "Structured variable selection with sparsity-inducing norms," Journal of Machine Learning Research, vol. 12, pp. 2777-2824, Feb. 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2777-2824
    • Jenatton, R.1    Audibert, J.2    Bach, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.