메뉴 건너뛰기




Volumn 9, Issue 4, 2014, Pages

Can we identify non-stationary dynamics of trial-to-trial variability?

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPUTER SIMULATION; DATA ANALYSIS; DECISION MAKING; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; MATHEMATICAL PHENOMENA; MATHEMATICAL VARIABLE; NONSTATIONARY DYNAMICS; PROBABILITY; PROCESS DESIGN; PROCESS DEVELOPMENT; QUALITY CONTROL; TREND STUDY; TRIAL TO TRIAL VARIABILITY; ALGORITHM; ANIMAL; CENTRAL NERVOUS SYSTEM; HUMAN; METHODOLOGY; NEUROLOGIC EXAMINATION; NONLINEAR SYSTEM; PHYSIOLOGY; RAT; REPRODUCIBILITY;

EID: 84899729782     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0095648     Document Type: Article
Times cited : (7)

References (83)
  • 1
    • 3042778584 scopus 로고    scopus 로고
    • On smoothing potentially non-stationary climate time series
    • Mann M (2004) On smoothing potentially non-stationary climate time series. Geophys Res Lett 31: L07214.
    • (2004) Geophys Res Lett , vol.31
    • Mann, M.1
  • 2
    • 84863869958 scopus 로고    scopus 로고
    • Separation of stationary and non-stationary sources with a generalized eigenvalue problem
    • Haraa S, Kawaharaa Y, Washioa T, von Bnau P, Tokunagac T, et al. (2012) Separation of stationary and non-stationary sources with a generalized eigenvalue problem. Neural Networks 33: 7-20.
    • (2012) Neural Networks , vol.33 , pp. 7-20
    • Haraa, S.1    Kawaharaa, Y.2    Washioa, T.3    Von Bnau, P.4    Tokunagac, T.5
  • 6
    • 84880166664 scopus 로고    scopus 로고
    • A method for stationarity-segmentation of spike train data with application to the pearson cross-correlation
    • Quiroga Lombard C, Hass J, Durstewitz D (2013) A method for stationarity-segmentation of spike train data with application to the pearson cross-correlation. J Neurophysiol 110: 562-572.
    • (2013) J Neurophysiol , vol.110 , pp. 562-572
    • Quiroga Lombard, C.1    Hass, J.2    Durstewitz, D.3
  • 7
    • 84868117004 scopus 로고    scopus 로고
    • Two layers of neural variability
    • Churchland M, Abbot L (2012) Two layers of neural variability. Nat Neurosci 15: 1472-1474.
    • (2012) Nat Neurosci , vol.15 , pp. 1472-1474
    • Churchland, M.1    Abbot, L.2
  • 8
    • 0028290996 scopus 로고
    • Correlated neuronal discharge rate and its implications for psychophysical performance
    • DOI 10.1038/370140a0
    • Zohary E, Shadlen M, Newsome W (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370: 140-143. (Pubitemid 24229125)
    • (1994) Nature , vol.370 , Issue.6485 , pp. 140-143
    • Zohary, E.1    Shadlen, M.N.2    Newsome, W.T.3
  • 9
    • 0017485290 scopus 로고
    • Analysis of variability in somatosensory cortical neuron discharge
    • Whitsel B, Schreiner R, Essick G (1977) Analysis of variability in somatosensory cortical neuron discharge. J Neurophysol 40: 589-607.
    • (1977) J Neurophysol , vol.40 , pp. 589-607
    • Whitsel, B.1    Schreiner, R.2    Essick, G.3
  • 10
    • 78651139750 scopus 로고
    • Variability of central neural activity in a sensory system, and its implications for central reection of sensory events
    • Werner G, Mountcastle V (1963) Variability of central neural activity in a sensory system, and its implications for central reection of sensory events. J Neurophysol 29: 958-977.
    • (1963) J Neurophysol , vol.29 , pp. 958-977
    • Werner, G.1    Mountcastle, V.2
  • 11
    • 77952718870 scopus 로고    scopus 로고
    • Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning
    • Durstewitz D, Vittoz N, Floresco S, Seamans J (2010) Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron 66: 438-448.
    • (2010) Neuron , vol.66 , pp. 438-448
    • Durstewitz, D.1    Vittoz, N.2    Floresco, S.3    Seamans, J.4
  • 12
    • 33845416493 scopus 로고    scopus 로고
    • A Central Source of Movement Variability
    • DOI 10.1016/j.neuron.2006.10.034, PII S0896627306008713
    • Churchland M, Afshar A, Shenoy K (2006) A central source of movement variability. Neuron 52: 1085-1096. (Pubitemid 44909405)
    • (2006) Neuron , vol.52 , Issue.6 , pp. 1085-1096
    • Churchland, M.M.1    Afshar, A.2    Shenoy, K.V.3
  • 13
    • 84859638124 scopus 로고    scopus 로고
    • Not noisy, just wrong: The role of suboptimal inference in behavioral variability
    • Beck J, Ma WJ, Pitkow X, Latham PE, Pouget A (2012) Not noisy, just wrong: The role of suboptimal inference in behavioral variability. Neuron 74: 33-39.
    • (2012) Neuron , vol.74 , pp. 33-39
    • Beck, J.1    Ma, W.J.2    Pitkow, X.3    Latham, P.E.4    Pouget, A.5
  • 14
    • 84868143186 scopus 로고    scopus 로고
    • Multiple spike time patterns occur at bifurcation points of membrane potential dynamics
    • Toups J, Fellous JM, Thomas P, Sejnowski T, Tiesinga P (2012) Multiple spike time patterns occur at bifurcation points of membrane potential dynamics. PLoS Comput Biol 8: e1002615.
    • (2012) PLoS Comput Biol , vol.8
    • Toups, J.1    Fellous, J.M.2    Thomas, P.3    Sejnowski, T.4    Tiesinga, P.5
  • 15
    • 84857802687 scopus 로고    scopus 로고
    • Ongoing cortical activity at rest: Criticality, multistability and ghost attractors
    • Deco V Gand Jirsa (2012) Ongoing cortical activity at rest: criticality, multistability and ghost attractors. J Neurosci 32: 3366-3375.
    • (2012) J Neurosci , vol.32 , pp. 3366-3375
    • Deco, V.G.1    Jirsa2
  • 16
    • 77954383378 scopus 로고    scopus 로고
    • Attractors and noise: Twin drivers of decisions and multistability
    • Braun J, Mattia M (2010) Attractors and noise: twin drivers of decisions and multistability. Neuroimage 52: 740-751.
    • (2010) Neuroimage , vol.52 , pp. 740-751
    • Braun, J.1    Mattia, M.2
  • 17
    • 84880020089 scopus 로고    scopus 로고
    • Multi-site reproducibility of prefrontal-hippocampal connectivity estimates by stochastic dynamic causal models
    • Bernal-Casas D, Balaguer-Ballester E, Gerchen M, Iglesias S, Walter H, et al. (2013) Multi-site reproducibility of prefrontal-hippocampal connectivity estimates by stochastic dynamic causal models. Neuroimage 82: 555-563.
    • (2013) Neuroimage , vol.82 , pp. 555-563
    • Bernal-Casas, D.1    Balaguer-Ballester, E.2    Gerchen, M.3    Iglesias, S.4    Walter, H.5
  • 18
    • 77649187675 scopus 로고    scopus 로고
    • Stimulus onset quenches neural variability: A widespread cortical phenomenon
    • Churchland M, Yu B, Cunningham J, Sugrue L, Cohen M, et al. (2010) Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci 13: 369-378.
    • (2010) Nat Neurosci , vol.13 , pp. 369-378
    • Churchland, M.1    Yu, B.2    Cunningham, J.3    Sugrue, L.4    Cohen, M.5
  • 19
    • 84859475170 scopus 로고    scopus 로고
    • Contextual encoding by ensembles of medial prefrontal cortex neurons
    • Hyman J, Ma L, Balaguer-Ballester E, Durstewitz D, Seamans J (2012) Contextual encoding by ensembles of medial prefrontal cortex neurons. PNAS 109: 5086-5091.
    • (2012) PNAS , vol.109 , pp. 5086-5091
    • Hyman, J.1    Ma, L.2    Balaguer-Ballester, E.3    Durstewitz, D.4    Seamans, J.5
  • 20
    • 80052578908 scopus 로고    scopus 로고
    • Trial-to-trial variability in the responses of neurons carries information about stimulus location in the rat whisker thalamus
    • Scaglione A, Moxon K, Aguilar J, Foffani G (2011) Trial-to-trial variability in the responses of neurons carries information about stimulus location in the rat whisker thalamus. PNAS 108: 14956-61.
    • (2011) PNAS , vol.108 , pp. 14956-14961
    • Scaglione, A.1    Moxon, K.2    Aguilar, J.3    Foffani, G.4
  • 21
    • 0034932944 scopus 로고    scopus 로고
    • Efficient computation and cue integration with noisy population codes
    • DOI 10.1038/90541
    • Deneve S, Latham P, Pouget A (2001) Efficient computation and cue integration with noisy population codes. Nat Neurosci 4: 826-831. (Pubitemid 32702515)
    • (2001) Nature Neuroscience , vol.4 , Issue.8 , pp. 826-831
    • Deneve, S.1    Latham, P.E.2    Pouget, A.3
  • 22
    • 84877321160 scopus 로고    scopus 로고
    • Origin of intrinsic irregular firing in cortical interneurons
    • Stiefel K, Englitz B, Sejnowski T (2013) Origin of intrinsic irregular firing in cortical interneurons. PNAS 110: 7886-91.
    • (2013) PNAS , vol.110 , pp. 7886-7891
    • Stiefel, K.1    Englitz, B.2    Sejnowski, T.3
  • 24
    • 79961045634 scopus 로고    scopus 로고
    • Bayesian sampling in visual perception
    • Moreno-Bote R, Knill D, Pouget A (2011) Bayesian sampling in visual perception. PNAS 108: 12491-12496.
    • (2011) PNAS , vol.108 , pp. 12491-12496
    • Moreno-Bote, R.1    Knill, D.2    Pouget, A.3
  • 25
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity from chaotic neural networks
    • Sussillo D, Abbott L (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron 63: 544-557.
    • (2009) Neuron , vol.63 , pp. 544-557
    • Sussillo, D.1    Abbott, L.2
  • 26
    • 84868159004 scopus 로고    scopus 로고
    • Slow dynamics and high variability in balanced cortical networks with clustered connections
    • Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat Neurosci 15: 1498-1505.
    • (2012) Nat Neurosci , vol.15 , pp. 1498-1505
    • Litwin-Kumar, A.1    Doiron, B.2
  • 29
    • 84875751702 scopus 로고    scopus 로고
    • Change detection in streaming multivariate data using likelihood detectors
    • Kuncheva L (2013) Change detection in streaming multivariate data using likelihood detectors. IEEE Transactions on Knowledge and Data Engineering 25: 1175-1180.
    • (2013) IEEE Transactions on Knowledge and Data Engineering , vol.25 , pp. 1175-1180
    • Kuncheva, L.1
  • 32
    • 84885852189 scopus 로고    scopus 로고
    • A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series
    • Nason G (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. J R Statist Soc B 75: 879904.
    • (2013) J R Statist Soc B , vol.75 , pp. 879904
    • Nason, G.1
  • 33
    • 84897113582 scopus 로고    scopus 로고
    • A frequency domain test for detecting nonstationary time series
    • In press
    • Chen J, Hu N (2014) A frequency domain test for detecting nonstationary time series. Computational Statistics and Data Analysis In press.
    • (2014) Computational Statistics and Data Analysis
    • Chen, J.1    Hu, N.2
  • 34
    • 0000110918 scopus 로고
    • A test for non-stationarity of time-series
    • Priestley M, Subba T (1969) A test for non-stationarity of time-series. J R Statist Soc B 31: 140149.
    • (1969) J R Statist Soc B , vol.31 , pp. 140149
    • Priestley, M.1    Subba, T.2
  • 35
    • 79956011493 scopus 로고    scopus 로고
    • Incremental learning with multi-level adaptation
    • Bouchachia A (2011) Incremental learning with multi-level adaptation. Neurocomputing 74: 1785-1799.
    • (2011) Neurocomputing , vol.74 , pp. 1785-1799
    • Bouchachia, A.1
  • 37
    • 84865592672 scopus 로고    scopus 로고
    • Online kernel principal component analysis: A reduced-order model
    • Honeine P (2012) Online kernel principal component analysis: A reduced-order model. Journal of Machine Learning Research 34: 1814-1826.
    • (2012) Journal of Machine Learning Research , vol.34 , pp. 1814-1826
    • Honeine, P.1
  • 40
    • 77954915017 scopus 로고    scopus 로고
    • Solving the forced duffing equation with integral boundary conditions in the reproducing kernel space
    • Du J, Cui M (2010) Solving the forced duffing equation with integral boundary conditions in the reproducing kernel space. International Journal of Computer Mathematics 87: 2088-2100.
    • (2010) International Journal of Computer Mathematics , vol.87 , pp. 2088-2100
    • Du, J.1    Cui, M.2
  • 41
    • 84899746579 scopus 로고    scopus 로고
    • Sabarathinama S, Thamilmaran K, Borkowski L, Perlikowski P, Brzeski P, et al (2013) 10: 3098-3017
    • Sabarathinama S, Thamilmaran K, Borkowski L, Perlikowski P, Brzeski P, et al (2013) 10: 3098-3017.
  • 43
    • 48749147667 scopus 로고
    • On the attracting set for duffing's equation
    • Holmes P, Whitley D (1983) On the attracting set for duffing's equation. Physica D 7: 111-123.
    • (1983) Physica D , vol.7 , pp. 111-123
    • Holmes, P.1    Whitley, D.2
  • 44
    • 0036475909 scopus 로고    scopus 로고
    • Advanced feedback control of the chaotic duffinng equation
    • Jiang ZP (2002) Advanced feedback control of the chaotic duffinng equation. IEEE Trans Circuits Syst 49: 244-249.
    • (2002) IEEE Trans Circuits Syst , vol.49 , pp. 244-249
    • Jiang, Z.P.1
  • 47
    • 84866102100 scopus 로고    scopus 로고
    • A canonical model of multistability and scaleinvariance in biological systems
    • Freyer F, Roberts J, Ritter P, Breakspear M (2012) A canonical model of multistability and scaleinvariance in biological systems. PLoS Comput Biol 8: e1002634.
    • (2012) PLoS Comput Biol , vol.8
    • Freyer, F.1    Roberts, J.2    Ritter, P.3    Breakspear, M.4
  • 49
    • 50149096578 scopus 로고    scopus 로고
    • Successful choice behavior is associated with distinct and coherent network states in anterior cingulate cortex
    • *first two authors contributed equally
    • Lapish C, Durstewitz D, Chandler L, Seamans J (2008) Successful choice behavior is associated with distinct and coherent network states in anterior cingulate cortex. Proc Natl Acad Sci USA 105: 12010-12015 (*first two authors contributed equally).
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 12010-12015
    • Lapish, C.1    Durstewitz, D.2    Chandler, L.3    Seamans, J.4
  • 51
    • 17844406150 scopus 로고    scopus 로고
    • Neuronal variability: Noise or part of the signal?
    • DOI 10.1038/nrn1668
    • Stein R, Gossen E, Jones KE (2005) Neuronal variability: noise or part of the signal? Nat Rev Neurosci 6: 389-397. (Pubitemid 40593484)
    • (2005) Nature Reviews Neuroscience , vol.6 , Issue.5 , pp. 389-397
    • Stein, R.B.1    Gossen, E.R.2    Jones, K.E.3
  • 52
  • 54
    • 0001088765 scopus 로고
    • Distinguishing between low-dimensional dynamics and randomness in measured time series
    • Provenzale A, Smith L, R V, Murante G (1992) Distinguishing between low-dimensional dynamics and randomness in measured time series. Physica D 5: 28-31.
    • (1992) Physica D , vol.5 , pp. 28-31
    • Provenzale, A.1    Smith, L.R.V.2    Murante, G.3
  • 56
    • 79958064103 scopus 로고    scopus 로고
    • Electrostatic field framework for supervised and semi-supervised learning from incomplete data
    • Budka M, Gabrys B (2011) Electrostatic field framework for supervised and semi-supervised learning from incomplete data. Natural Computing 10: 921-945.
    • (2011) Natural Computing , vol.10 , pp. 921-945
    • Budka, M.1    Gabrys, B.2
  • 58
    • 34249013692 scopus 로고    scopus 로고
    • Predicting service request in support centers based on nonlinear dynamics, ARMA modeling and neural networks
    • DOI 10.1016/j.eswa.2006.10.003, PII S0957417406003174
    • Balaguer-Ballester E, Soria E, Palomares A, Martn-Guerrero J (2008) Predicting service request in support centres based on nonlinear dynamics, arma modelling and neural networks. Expert Sys with App 34: 665-672. (Pubitemid 46778983)
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 665-672
    • Balaguer, E.1    Palomares, A.2    Soria, E.3    Martin-Guerrero, J.D.4
  • 60
    • 34548415768 scopus 로고    scopus 로고
    • Optimally regularised kernel Fisher discriminant classification
    • DOI 10.1016/j.neunet.2007.05.005, PII S0893608007000883
    • Saadi K, Talbot N, Cawley G (2007) Optimally regularised kernel fisher discriminant classification. Neural Networks 20: 832-841. (Pubitemid 47361672)
    • (2007) Neural Networks , vol.20 , Issue.7 , pp. 832-841
    • Saadi, K.1    Talbot, N.L.C.2    Cawley, G.C.3
  • 61
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire R, Freund Y, Bartlett P, Sun Lee W (1998) Boosting the margin: A new explanation for the effectiveness of voting methods. The annals of statistics 26: 1651-1686. (Pubitemid 128376902)
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 62
    • 33748040101 scopus 로고    scopus 로고
    • Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration
    • Gomez-Sanchis J, Martin-Guerrero J, Soria-Olivas E, Vila-Frances J, Carrasco J, et al. (2006) Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration. Atmospheric Environment 40: 6173-6180.
    • (2006) Atmospheric Environment , vol.40 , pp. 6173-6180
    • Gomez-Sanchis, J.1    Martin-Guerrero, J.2    Soria-Olivas, E.3    Vila-Frances, J.4    Carrasco, J.5
  • 63
    • 0037107821 scopus 로고    scopus 로고
    • Effective one-day ahead prediction of hourly surface ozone concentrations in eastern spain using linear models and neural networks
    • Balaguer-Ballester E, Camps-Valls G, Carrasco-Rodriguez JL, E S, del Valle-Tascon S (2002) Effective one-day ahead prediction of hourly surface ozone concentrations in eastern spain using linear models and neural networks. Ecological Modelling 156: 27-41.
    • (2002) Ecological Modelling , vol.156 , pp. 27-41
    • Balaguer-Ballester, E.1    Camps-Valls, G.2    Carrasco-Rodriguez, J.L.3    S, E.4    Del Valle-Tascon, S.5
  • 64
    • 78650339790 scopus 로고    scopus 로고
    • Emerging concepts for the dynamical organization of restingstate activity in the brain
    • Deco G, Jirsa V, McIntosh A (2011) Emerging concepts for the dynamical organization of restingstate activity in the brain. Nat Rev Neurosci 12: 43-56.
    • (2011) Nat Rev Neurosci , vol.12 , pp. 43-56
    • Deco, G.1    Jirsa, V.2    McIntosh, A.3
  • 65
    • 77953812279 scopus 로고    scopus 로고
    • Higher-order correlations in non-stationary parallel spike trains: Statistical modeling and inference
    • doi:10.3389/fncom.2010.00016
    • Staude B, Grun S, Rotter S (2010) Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference. Front Comput Neurosci 16: doi:10.3389/fncom.2010.00016
    • (2010) Front Comput Neurosci , vol.16
    • Staude, B.1    Grun, S.2    Rotter, S.3
  • 66
    • 40849088450 scopus 로고    scopus 로고
    • A model of perceptual segregation based on clustering the time series of the simulated auditory nerve firing probability
    • Balaguer-Ballester E, Coath M, Denham S (2007) A model of perceptual segregation based on clustering the time series of the simulated auditory nerve firing probability. Biol Cybern 97: 479-491.
    • (2007) Biol Cybern , vol.97 , pp. 479-491
    • Balaguer-Ballester, E.1    Coath, M.2    Denham, S.3
  • 67
    • 84899742430 scopus 로고    scopus 로고
    • Statistical approaches for reconstructing neuro-cognitive dynamics from high-dimensional neural recordings
    • Durstewitz D, Balaguer-Ballester E (2010) Statistical approaches for reconstructing neuro-cognitive dynamics from high-dimensional neural recordings. Neuroforum 1: 89-98.
    • (2010) Neuroforum , vol.1 , pp. 89-98
    • Durstewitz, D.1    Balaguer-Ballester, E.2
  • 68
    • 77952097922 scopus 로고    scopus 로고
    • Olfactory pattern classification by discrete neuronal network states
    • Niessing J, Friedrich R (2010) Olfactory pattern classification by discrete neuronal network states. Nature 465: 47-54.
    • (2010) Nature , vol.465 , pp. 47-54
    • Niessing, J.1    Friedrich, R.2
  • 69
    • 18244386706 scopus 로고    scopus 로고
    • Attractor dynamics in the hippocampal representation of the local environment
    • DOI 10.1126/science.1108905
    • Wills T, Lever C, Cacucci F, Burgess N, O'Keefe J (2005) Attractor dynamics in the hippocampal representation of the local environment. Science 308: 873-876. (Pubitemid 40629271)
    • (2005) Science , vol.308 , Issue.5723 , pp. 873-876
    • Wills, T.J.1    Lever, C.2    Cacucci, F.3    Burgess, N.4    O'Keefe, J.5
  • 70
    • 27844461164 scopus 로고    scopus 로고
    • Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons
    • DOI 10.1016/j.neuron.2005.09.032, PII S0896627305008925
    • Mazor O, Laurent G (2005) Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48: 661-673. (Pubitemid 41654686)
    • (2005) Neuron , vol.48 , Issue.4 , pp. 661-673
    • Mazor, O.1    Laurent, G.2
  • 71
    • 39449110160 scopus 로고    scopus 로고
    • Dynamic Ensemble Odor Coding in the Mammalian Olfactory Bulb: Sensory Information at Different Timescales
    • DOI 10.1016/j.neuron.2008.02.011, PII S0896627308001347
    • Bathellier B, Buhl D, Accolla R, Carleton A (2008) Dynamic ensemble odor coding in the mamalian olfactory bulb: Sensory information at different time scales. Neuron 57: 586-598. (Pubitemid 351274002)
    • (2008) Neuron , vol.57 , Issue.4 , pp. 586-598
    • Bathellier, B.1    Buhl, D.L.2    Accolla, R.3    Carleton, A.4
  • 73
    • 84884687809 scopus 로고    scopus 로고
    • Inferring trial-to-trial excitatory and inhibitory synaptic inputs from membrane potential using gaussian mixture kalman filtering
    • Milad L, Ping Z, Srikanta S, Taro T (2013) Inferring trial-to-trial excitatory and inhibitory synaptic inputs from membrane potential using gaussian mixture kalman filtering. Frontiers in Comput Neurosci 7: 00109.
    • (2013) Frontiers in Comput Neurosci , vol.7 , pp. 00109
    • Milad, L.1    Ping, Z.2    Srikanta, S.3    Taro, T.4
  • 74
    • 84863874478 scopus 로고    scopus 로고
    • Inferring synaptic inputs given a noisy voltage trace via sequential monte carlo methods
    • Paninski L, Vidne M, DePasquale B, Ferreira DG (2012) Inferring synaptic inputs given a noisy voltage trace via sequential monte carlo methods. J Comput Neurosci 33: 1-19.
    • (2012) J Comput Neurosci , vol.33 , pp. 1-19
    • Paninski, L.1    Vidne, M.2    DePasquale, B.3    Ferreira, D.G.4
  • 75
    • 84856380698 scopus 로고    scopus 로고
    • Estimation of time-dependent input from neuronal membrane potential
    • Kobayashi R, Shinomoto S, Lansky P (2012) Estimation of time-dependent input from neuronal membrane potential. Neural Comput 23: 3070-3093.
    • (2012) Neural Comput , vol.23 , pp. 3070-3093
    • Kobayashi, R.1    Shinomoto, S.2    Lansky, P.3
  • 76
    • 84865298110 scopus 로고    scopus 로고
    • Reduced variability of ongoing and evoked cortical activity leads to improved behavioral performance
    • Ledberg A, Montagnini A, Coppola R, Bressler S (2012) Reduced variability of ongoing and evoked cortical activity leads to improved behavioral performance. PLoS ONE 7: e43166.
    • (2012) PLoS ONE , vol.7
    • Ledberg, A.1    Montagnini, A.2    Coppola, R.3    Bressler, S.4
  • 77
    • 46849100436 scopus 로고    scopus 로고
    • Transient dynamics for neural processing
    • Rabinovich M, Huerta R, Laurent G (2008) Transient dynamics for neural processing. Science 321: 48-50.
    • (2008) Science , vol.321 , pp. 48-50
    • Rabinovich, M.1    Huerta, R.2    Laurent, G.3
  • 78
    • 84947239223 scopus 로고    scopus 로고
    • Robust transient dynamics and brain functions
    • doi:10.3389/fncom.2011.00024
    • Rabinovich M, Varona P (2011) Robust transient dynamics and brain functions. Front Comput Neurosci 6: doi:10.3389/fncom.2011.00024
    • (2011) Front Comput Neurosci , vol.6
    • Rabinovich, M.1    Varona, P.2
  • 82
    • 24344494438 scopus 로고    scopus 로고
    • Cross-validation bandwidth matrices for multivariate kernel density estimation
    • DOI 10.1111/j.1467-9469.2005.00445.x
    • Duong T, Hazelton M (2005) Cross-validation bandwidth matrices for multivariate kernel density estimation. Scand J Statist 32: 485-506. (Pubitemid 41251539)
    • (2005) Scandinavian Journal of Statistics , vol.32 , Issue.3 , pp. 485-506
    • Duong, T.1    Hazelton, M.L.2
  • 83
    • 84856373156 scopus 로고    scopus 로고
    • Optimizing time histograms for non-poissonian spike trains
    • Omi T, Shinomoto S (2011) Optimizing time histograms for non-poissonian spike trains. Neural Computation 23: 3125-3144.
    • (2011) Neural Computation , vol.23 , pp. 3125-3144
    • Omi, T.1    Shinomoto, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.