메뉴 건너뛰기




Volumn 23, Issue 4, 2012, Pages 631-643

Feature extraction for change-point detection using stationary subspace analysis

Author keywords

Change point detection; feature extraction; high dimensional data; segmentation; stationarity; time series analysis

Indexed keywords

CHANGE POINT DETECTION; EXTENDED VERSIONS; EXTENSIVE SIMULATIONS; FEATURE EXTRACTION METHODS; HIGH DIMENSIONAL DATA; PROBABILITY DENSITIES; STATIONARITY; SUBSPACE ANALYSIS;

EID: 84859455143     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2012.2185811     Document Type: Article
Times cited : (51)

References (43)
  • 1
    • 0017905044 scopus 로고
    • ECG/VCG rhythm diagnosis using statistical signal analysis-I. Identification of persistent rhythms
    • Jul
    • D. Gustafson, A. Willsky, J. Wang, M. Lancaster, and J. Triebwasser, "ECG/VCG rhythm diagnosis using statistical signal analysis-I. Identification of persistent rhythms," IEEE Trans. Biomed. Eng., vol. 25, no. 4, pp. 344-353, Jul. 1978.
    • (1978) IEEE Trans. Biomed. Eng , vol.25 , Issue.4 , pp. 344-353
    • Gustafson, D.1    Willsky, A.2    Wang, J.3    Lancaster, M.4    Triebwasser, J.5
  • 3
    • 0034220601 scopus 로고    scopus 로고
    • Identification of nonstationary dynamics in physiological recordings
    • J. Kohlmorgen, J. Rittweger, and K. Pawelzik, "Identification of nonstationary dynamics in physiological recordings," Biol. Cybern., vol. 83, no. 1, pp. 73-84, 2000.
    • (2000) Biol. Cybern , vol.83 , Issue.1 , pp. 73-84
    • Kohlmorgen, J.1    Rittweger, J.2    Pawelzik, K.3
  • 4
    • 0023831656 scopus 로고
    • A new statistical approach for the automatic segmentation of continuous speech signals
    • Jan
    • R. Andre-Obrecht, "A new statistical approach for the automatic segmentation of continuous speech signals," IEEE Trans. Acoust., Speech, Signal Process., vol. 36, no. 1, pp. 29-40, Jan. 1988.
    • (1988) IEEE Trans. Acoust., Speech, Signal Process , vol.36 , Issue.1 , pp. 29-40
    • Andre-Obrecht, R.1
  • 5
    • 0000800741 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • A. Waibel and K. Lee, Eds. San Mateo, CA: Morgan Kaufmann
    • L. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," in Readings in Speech Recognition, A. Waibel and K. Lee, Eds. San Mateo, CA: Morgan Kaufmann, 1990, pp. 267-296.
    • (1990) Readings in Speech Recognition , pp. 267-296
    • Rabiner, L.1
  • 7
    • 0028499286 scopus 로고
    • Improving transient response of adaptive control systems using multiple models and switching
    • Sep
    • K. Narendra and J. Balakrishnan, "Improving transient response of adaptive control systems using multiple models and switching," IEEE Trans. Autom. Control, vol. 39, no. 9, pp. 1861-1866, Sep. 1994.
    • (1994) IEEE Trans. Autom. Control , vol.39 , Issue.9 , pp. 1861-1866
    • Narendra, K.1    Balakrishnan, J.2
  • 8
    • 0025421966 scopus 로고
    • Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results
    • May
    • P. Frank, "Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results," Automatica, vol. 26, no. 3, pp. 459-474, May 1990.
    • (1990) Automatica , vol.26 , Issue.3 , pp. 459-474
    • Frank, P.1
  • 9
    • 70350341223 scopus 로고    scopus 로고
    • Nonparametric methods for change point problems
    • P. Krishnaiah and C. Rao, Eds. New York: Elsevier
    • H. Csörgö and L. Horvárth, "Nonparametric methods for change point problems," in Handbook of Statistics, vol. 7, P. Krishnaiah and C. Rao, Eds. New York: Elsevier, 2009, pp. 403-425.
    • (2009) Handbook of Statistics , vol.7 , pp. 403-425
    • Csörgö, H.1    Horvárth, L.2
  • 10
    • 0001558731 scopus 로고    scopus 로고
    • Annealed competition of experts for a segmentation and classification of switching dynamics
    • K. Pawelzik, J. Kohlmorgen, and K.-R. Muller, "Annealed competition of experts for a segmentation and classification of switching dynamics," Neural Comput., vol. 8, no. 2, pp. 340-356, 1996.
    • (1996) Neural Comput , vol.8 , Issue.2 , pp. 340-356
    • Pawelzik, K.1    Kohlmorgen, J.2    Muller, K.-R.3
  • 11
    • 0020091852 scopus 로고
    • Adaptive sequential segmentation of piecewise stationary time series
    • Feb
    • U. Appelai and A. Brandta, "Adaptive sequential segmentation of piecewise stationary time series," Inf. Sci., vol. 29, no. 1, pp. 27-56, Feb. 1983.
    • (1983) Inf. Sci , vol.29 , Issue.1 , pp. 27-56
    • Appelai, U.1    Brandta, A.2
  • 12
    • 84898994780 scopus 로고    scopus 로고
    • A dynamic HMM for on-line segmentation of sequential data
    • T. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press
    • J. Kohlmorgen and S. Lemm, "A dynamic HMM for on-line segmentation of sequential data," in Advances in Neural Information Processing Systems 14, T. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, pp. 793-800.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 793-800
    • Kohlmorgen, J.1    Lemm, S.2
  • 13
    • 7744244536 scopus 로고    scopus 로고
    • An evolutionary approach to pattern-based time series segmentation
    • Oct
    • F. Chung, T. Fu, V. Ng, and R. Luk, "An evolutionary approach to pattern-based time series segmentation," IEEE Trans. Evol. Comput., vol. 8, no. 5, pp. 471-489, Oct. 2004.
    • (2004) IEEE Trans. Evol. Comput , vol.8 , Issue.5 , pp. 471-489
    • Chung, F.1    Fu, T.2    Ng, V.3    Luk, R.4
  • 14
    • 67349235289 scopus 로고    scopus 로고
    • Speaker distinguishing distances: A comparative study
    • A. Iyer, U. Ofoegbu, R. Yantorno, and B. Smolenski, "Speaker distinguishing distances: A comparative study," Int. J. Speech Technol., vol. 10, nos. 2-3, pp. 95-107, 2009.
    • (2009) Int. J. Speech Technol , vol.10 , Issue.2-3 , pp. 95-107
    • Iyer, A.1    Ofoegbu, U.2    Yantorno, R.3    Smolenski, B.4
  • 15
    • 72849146898 scopus 로고    scopus 로고
    • Change-point detection in time-series data by direct density-ratio estimation
    • Sparks, NV, Apr
    • Y. Kawahara and M. Sugiyama, "Change-point detection in time-series data by direct density-ratio estimation," in Proc. 9th SIAM Int. Conf. Data Mining, Sparks, NV, Apr. 2009, pp. 389-400.
    • (2009) Proc. 9th SIAM Int. Conf. Data Mining , pp. 389-400
    • Kawahara, Y.1    Sugiyama, M.2
  • 16
    • 0033982156 scopus 로고    scopus 로고
    • Artifact reduction in magnetoneurography based on time-delayed second-order correlations
    • Jan
    • A. Ziehe, K.-R. Muller, G. Nolte, B.-M. Mackert, and G. Curio, "Artifact reduction in magnetoneurography based on time-delayed second-order correlations," IEEE Trans. Biomed. Eng., vol. 47, no. 1, pp. 75-87, Jan. 2000.
    • (2000) IEEE Trans. Biomed. Eng , vol.47 , Issue.1 , pp. 75-87
    • Ziehe, A.1    Muller, K.-R.2    Nolte, G.3    MacKert, B.-M.4    Curio, G.5
  • 19
    • 70450167506 scopus 로고    scopus 로고
    • Finding stationary subspaces in multivariate time series
    • Nov
    • P. Bünau, F. C. Meinecke, F. J. Király, and K.-R. Müller, "Finding stationary subspaces in multivariate time series," Phys. Rev. Lett., vol. 103, no. 21, pp. 214101-1-214101-4, Nov. 2009.
    • (2009) Phys. Rev. Lett , vol.103 , Issue.21 , pp. 2141011-2141014
    • Bünau, P.1    Meinecke, F.C.2    Király, F.J.3    Müller, K.-R.4
  • 20
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 22
    • 84858864108 scopus 로고
    • A framework for low level feature extraction
    • W. Foerstner, "A framework for low level feature extraction," in Proc. Comput. Vis., vol. 801. 1994, pp. 383-394.
    • (1994) Proc. Comput. Vis , vol.801 , pp. 383-394
    • Foerstner, W.1
  • 23
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larranaga, "A review of feature selection techniques in bioinformatics," Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 24
    • 18744384734 scopus 로고    scopus 로고
    • Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum
    • J. Morris, K. Coombes, J. Koomen, E. Baggerly, and R. Kobayashi, "Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum," Bioinformatics, vol. 21, no. 9, pp. 1764-1775, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1764-1775
    • Morris, J.1    Coombes, K.2    Koomen, J.3    Baggerly, E.4    Kobayashi, R.5
  • 25
    • 0002312061 scopus 로고
    • Feature selection and feature extraction for text categorization
    • Pacific Grove, CA Feb
    • D. Lewis, "Feature selection and feature extraction for text categorization," in Proc. Workshop Speech Natural Lang., Pacific Grove, CA, Feb. 1991, pp. 212-217.
    • (1991) Proc. Workshop Speech Natural Lang , pp. 212-217
    • Lewis, D.1
  • 26
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • K. Torkkolai, "Feature extraction by non-parametric mutual information maximization," J. Mach. Learn. Res., vol. 3, nos. 7-8, pp. 1415-1438, 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , Issue.7-8 , pp. 1415-1438
    • Torkkolai, K.1
  • 27
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Jul
    • B. Schölkopf, A. J. Smola, and K.-R. Müller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Comput., vol. 10, no. 5, pp. 1299-1319, Jul. 1998.
    • (1998) Neural Comput , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 28
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • Jan
    • H. Li, T. Jiang, and K. Zhang, "Efficient and robust feature extraction by maximum margin criterion," IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 157-165, Jan. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.1 , pp. 157-165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 29
    • 79952185779 scopus 로고    scopus 로고
    • MDS-based multiresolution nonlinear dimensionality reduction model for color image segmentation
    • Mar.
    • M. Mignotte, "MDS-based multiresolution nonlinear dimensionality reduction model for color image segmentation," IEEE Trans. Neural Netw., vol. 22, no. 3, pp. 447-460, Mar. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.3 , pp. 447-460
    • Mignotte, M.1
  • 30
    • 76749105659 scopus 로고    scopus 로고
    • Feature extraction using constrained approximation and suppression
    • Feb.
    • Y. Washizawa, "Feature extraction using constrained approximation and suppression," IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 201-210, Feb. 2010.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.2 , pp. 201-210
    • Washizawa, Y.1
  • 34
    • 21744446767 scopus 로고    scopus 로고
    • Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras
    • Aug
    • M. Plumbley, "Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras," Neurocomputing, vol. 67, pp. 161-197, Aug. 2005.
    • (2005) Neurocomputing , vol.67 , pp. 161-197
    • Plumbley, M.1
  • 35
    • 0001972601 scopus 로고
    • The large-sample distribution of the likelihood ratio for testing composite hypotheses
    • S. Wilks, "The large-sample distribution of the likelihood ratio for testing composite hypotheses," Ann. Math. Statist., vol. 9, no. 1, pp. 60-62, 1938.
    • (1938) Ann. Math. Statist , vol.9 , Issue.1 , pp. 60-62
    • Wilks, S.1
  • 36
    • 0001120850 scopus 로고
    • Minimum spanning trees and single linkage cluster analysis
    • J. C. Gower and G. J. S. Ross, "Minimum spanning trees and single linkage cluster analysis," J. Royal Stat. Soc., vol. 18, no. 1, pp. 54-64, 1969.
    • (1969) J. Royal Stat. Soc , vol.18 , Issue.1 , pp. 54-64
    • Gower, J.C.1    Ross, G.J.S.2
  • 37
    • 0002916530 scopus 로고
    • Continuous inspection schemes
    • E. Page, "Continuous inspection schemes," Biometrika, vol. 41, nos. 1-2, pp. 100-115, 1954.
    • (1954) Biometrika , vol.41 , Issue.1-2 , pp. 100-115
    • Page, E.1
  • 38
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson, "On lines and planes of closest fit to systems of points in space," Philos. Mag. J. Sci., vol. 2, no. 6, pp. 559-572, 1901.
    • (1901) Philos. Mag. J. Sci , vol.2 , Issue.6 , pp. 559-572
    • Pearson, K.1
  • 39
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept?
    • P. Comon, "Independent component analysis: A new concept?" Signal Process., vol. 36, no. 3, pp. 287-314, 1994.
    • (1994) Signal Process , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 40
    • 8344255796 scopus 로고    scopus 로고
    • Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation
    • Dec
    • A. Ziehe, M. Kawanabe, S. Harmeling, and K.-R. Müller, "Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation," J. Mach. Learn. Res., vol. 4, pp. 1319-1338, Dec. 2003.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 1319-1338
    • Ziehe, A.1    Kawanabe, M.2    Harmeling, S.3    Müller, K.-R.4
  • 41
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • May
    • A. Hyvaerinen, "Fast and robust fixed-point algorithms for independent component analysis," IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 626-634, May 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.3 , pp. 626-634
    • Hyvaerinen, A.1
  • 43
    • 77958008380 scopus 로고    scopus 로고
    • A variational Bayesian methodology for hidden Markov models utilizing Student's-t mixtures
    • Feb.
    • S. Chatzis and D. I. Kosmopoulos, "A variational Bayesian methodology for hidden Markov models utilizing Student's-t mixtures," Pattern Recognit., vol. 44, no. 2, pp. 295-306, Feb. 2011.
    • (2011) Pattern Recognit , vol.44 , Issue.2 , pp. 295-306
    • Chatzis, S.1    Kosmopoulos, D.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.